

Impact of Data Preprocessing on Neural Network Performance: A Comparative Analysis

Saverio Mattia **Merenda** <u>saveriomattia.merenda@studenti.unipr.it</u>

Fondamenti di Intelligenza Artificiale [2024-2025]

datasets and unfiltered datasets

Presentation Overview:

- Context and motivations for data preprocessing
- Preprocessing pipeline architecture
- Different preprocessing scenarios
- Comparative results

• Objective: Study how neural network effectiveness varies when using clean

Why Data Quality Matters?

- **Data preprocessing** is a crucial step that directly impacts neural network performance. •
- Poor quality data can lead to: •
 - Reduced Accuracy: Inconsistent and noisy data leads to poor model predictions
 - Training Instability: Missing values and outliers cause convergence issues
 - Bias Introduction: Improper handling of data can create systematic biases
- **Common Dataset Problems:** •
 - Missing Values: "?", "nan", "NaN", empty cells
 - Outliers: Extreme values that skew distributions •
 - Inconsistent Scaling: Features with different ranges

Pipeline Workflow

Dataset Loading

Model Validation

Something new

Scenario: NaN Values Removal

Advantages:

- Simple and straightforward approach
- No assumptions about missing data patterns
- Clean dataset with complete information

Disadvantages:

- Potential significant data loss
- Reduced statistical power

Scenarios: NaN Imputation Strategies

Three Imputation Methods:

Mean, Mode and Median Imputation

Advantages:

- Maintains dataset size with multiple imputation options
- Disadvantages:
 - Can introduce bias and affect variance

Scenario: Outlier Removal

- Advantages:
 - Improves model stability by removing extreme outliers
- Disadvantages:
 - May remove valuable data if the method is too aggressive

• Isolation Forest method with various thresholds [1%, 3%, 5%]

Scenario: Z-score Normalization

- **Transforms** data to have a mean of 0 and a standard deviation of 1
- Formula: $Z = (X \mu)/\sigma$
- **Example:** If student scores are [50, 60, 70, 80, 90], the average score μ is 70 and σ is [5.8] •
 - |5.8| ≈ |.26
- Advantages:
 - Essential for algorithms sensitive to feature scales
- **Disadvantages:** •
 - Can alter inherent characteristics of the original data

• Score 50 becomes $(50-70)/(5.8) \approx -(1.26)$; score 70 becomes (70-70)/(5.8) = 0; score 90 becomes (90-70)/(5.8)

Scenarios: Quantile Transformation

- •
- across the range
- Advantages:
 - Effective for handling non-Gaussian or highly skewed data distributions
- **Disadvantages:**
 - Can alter inherent characteristics of the original data
 - Loss of direct interpretability of original values

Non-linear transformation that maps data to a uniform or normal distribution based on percentiles

Example: Transforming a highly skewed income distribution [10k, 12k, 15k, 200k, 1M] to a uniform [0.0, 0.25, 0.5, 0.75, 1.0]. The relative order is preserved, but the spacing between values changes to be uniform

Neural Network Architecture

- The neural network used is a **feed-forward network** configured with **3 hidden layers**:
 - First hidden layer: size = max(64, input size * 2)
 - Second hidden layer: size = max(32, input size)
 - Third hidden layer: size = max(16, input size // 2)
- Each layer incorporates Batch, ReLU activation, and Dropout

Advantages:

• Adapts to the number of features and enhances training stability

Disadvantages: •

• Fixed architecture that might not be optimal for every dataset

Used Datasets

• Trained for 100 epochs, LR of 0.001, used Adam optimizer

Classification:

- Census Income (48k instances): [archive.ics.uci.edu]
- Bank Marketing (45k instances): [archive.ics.uci.edu]

Regression: •

- Bike Sharing (17k instances): [archive.ics.uci.edu]
- Pakistan House Pricing (168k instances): [kaggle.com]

Classification Metrics

Accuracy: Proportion of correct predictions

• Precision: Ratio of true positives to all positive predictions

• FI Score: Harmonic mean of precision and recall

• Recall (Sensitivity): Ability to identify all actual positive cases

Classification Metrics

Regression Metrics

- Mean Absolute Error (MAE): The average absolute difference between actual and predicted values
- Mean Squared Error (MSE): The average of squared differences between actual and predictions
- **R** Squared (R²): Represents the proportion of variance explained by the model

Regression Metrics

 $MAE = -\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$

MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

 $R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$

Census Income Results

Method
01_without_NaN
02_imputed_mean
03_imputed_mode
04_imputed_median
05_no_outliers_0.01
05_no_outliers_0.03
05_no_outliers_0.05
06_normalized
07_transformed
08_normalized_transformed

(AutoML) Light Gradient Boosting Machine

Accuracy	Precision	Recall	F1
0.8513	0.8454	0.8513	0.8465
0.8530	0.8476	0.8530	0.8492
0.8552	0.8499	0.8552	0.8514
0.8550	0.8496	0.8550	0.8510
0.8535	0.8489	0.8535	0.8504
0.8525	0.8489	0.8525	0.8503
0.8507	0.8466	0.8507	0.8481
0.8511	0.8474	0.8511	0.8488
0.8462	0.8430	0.8462	0.8443
0.8452	0.8417	0.8452	0.8431
0.8737	0.8737	0.8694	0.8700

Bank Marketing Results

Method	Accuracy	Precision	Recall	F1
01_without_NaN	0.7461	0.7255	0.7461	0.6929
05_no_outliers_0.01	0.7519	0.7313	0.7519	0.7086
05_no_outliers_0.03	0.7524	0.7304	0.7524	0.7111
05_no_outliers_0.05	0.7542	0.7325	0.7542	0.7106
06_normalized	0.7526	0.7327	0.7526	0.7096
07_transformed	0.7497	0.7289	0.7497	0.7033
08_normalized_transformed	0.7530	0.7325	0.7530	0.7096
(AutoML) Gradient Boosting Classifier	0.9451	0.9451	0.9361	0.9384

Bike Sharing Results

Method	MSE	MAE	R²
01_without_NaN	732.0428	17.9583	0.9849
05_no_outliers_0.01	1262.5328	25.7145	0.9740
05_no_outliers_0.03	1323.4792	24.9745	0.9727
05_no_outliers_0.05	1737.3779	28.8209	0.9640
06_normalized	11559.1484	83.1329	0.7615
07_transformed	12692.0869	85.6862	0.7381
08_normalized_transformed	15285.6006	95.9158	0.6843
(AutoML) Linear Regression	0.0	0.0	1.0

House Pricing Results

Method

01_without_NaN

05_no_outliers_0.01

05_no_outliers_0.03

05_no_outliers_0.05

06_normalized

07_transformed

08_normalized_transformed

(AutoML) Light Gradient Boosting Machine

MSE	MAE	R²
9.893339e+14	1.444670e+07	-0.2592
7.572025e+14	1.376704e+07	-0.3129
6.610446e+14	1.334692e+07	-0.3506
6.028811e+14	1.296907e+07	-0.3639
4.179000e-01	2.709000e-01	0.5519
1.296000e-01	2.722000e-01	0.8705
1.501000e-01	2.942000e-01	0.8509
1.143050e+14	3.591056e+06	0.8545

Key Findings

Most Effective Techniques

- Mode/Median Imputation: Better than mean imputation
- Moderate Outlier Removal: I-3% thresholds optimal
- Quantile Transformations: Essential for skewed data

Less Effective Techniques

- Complex Combinations: No guaranteed improvements
- Aggressive Preprocessing: Can remove valuable patterns

AutoML & Future Research

AutoML Growing Adoption

- Industry-wide adoption: Major cloud providers (AWS, Google, Azure) integrate AutoML
- Non-experts can now build effective models
- Preprocessing automation: Growing focus on automated data preparation pipelines

Future Research Directions

- Adaptive preprocessing: Automatic technique selection based on data characteristics
- Intelligent quality assessment: Automated metrics for preprocessing necessity
- Context-aware pipelines: Real-time adaptation to dataset patterns

Impact of Data Preprocessing on Neural Network Performance: A Comparative Analysis

github.com/merendamattia/neural-network-performance-by-data-quality

Saverio Mattia **Merenda** <u>saveriomattia.merenda@studenti.unipr.it</u>

Fondamenti di Intelligenza Artificiale [2024-2025]

