
GraphQL
A Gentle Introduction

Saverio Mattia Merenda
Pasquale Castelluccia

08/05/2025

Lesson Agenda

▪ The Limits of Traditional REST APIs (The Problem)

▪ What is GraphQL? (Introduction & Origins)

▪ How GraphQL addresses these Limits (The Solution)

▪ The Heart of GraphQL: The Schema Definition
Language

▪ Interacting with Data: Queries & Mutations

▪ Direct Comparison: GraphQL vs REST (Practical
Scenario)

Social Media Data Retrieval Use Case

▪ Goal: fetch a user’s profile within its recent activity in one
cohesive flow.

▪ Data Requirements:

▪ User: id, username, profilePictureUrl

▪ Posts (most recent 3):

▪ for each post id, text, timestamp

▪ Comments (most recent 2 per post):

▪ for each comment id, text, commenterUsername

What is REST?

▪ REST (REpresentational State Transfer): an
architectural style for designing networked applications,
widely used for web APIs.

▪ Resource-Oriented: focuses on resources (like users,
posts, comments) identified by unique URLs (e.g.,
/users/123).

▪ Uses standard HTTP verbs for actions, e.g., GET to retrieve
a resource; POST to create a new resource; PUT to update
an existing resource.

▪ Stateless: each request from client to server must contain
all necessary information; the server doesn't store client
session state between requests.

▪ Client-Server Separation: client (e.g., app) and server
(API) are independent and evolve separately.

REST Approach

ServerClient

REST Approach
GET /users/mariospada

ServerClient

REST Approach
GET /users/mariospada

GET /users/mariospada/posts?limit=3&sort=desc

ServerClient

REST Approach
GET /users/mariospada

GET /users/mariospada/posts?limit=3&sort=desc

GET /posts/ID01/comments?limit=2&sort=desc ServerClient

REST Approach
GET /users/mariospada

GET /users/mariospada/posts?limit=3&sort=desc

GET /posts/ID01/comments?limit=2&sort=desc

GET /posts/ID02/comments?limit=2&sort=desc

ServerClient

REST Approach
GET /users/mariospada

GET /users/mariospada/posts?limit=3&sort=desc

GET /posts/ID01/comments?limit=2&sort=desc

GET /posts/ID02/comments?limit=2&sort=desc

GET /posts/ID03/comments?limit=2&sort=desc

ServerClient

REST Approach

▪ GET /users/{userId}

▪ Returns full user resource (often includes extra fields
causing over‑fetching).

▪ GET /users/{userId}/posts?limit=3&sort=desc

▪ Retrieves last 3 posts (may include likes, shares causing
unused data).

▪ For each post (e.g., post1, post2, post3):
▪ GET /posts/{postId}/comments?limit=2&sort=desc

▪ Three separate calls to fetch comments for each post
(under‑fetching without nested support).

▪ Inefficient Data Fetching
▪ Complex features (e.g., News Feed) required data from

multiple sources with nested relationships.
▪ REST often meant numerous round‑trips to different

endpoints, slowing load times and consuming precious
mobile bandwidth.

▪ Over‑fetching & Under‑fetching
▪ Over‑fetching: clients received extra, unused

data—wasting bandwidth and client‑side processing.
▪ Under‑fetching: single endpoints didn’t supply all required

fields, forcing additional API calls.

The Problem (Why)

▪ Tight Frontend–Backend Coupling
▪ UI changes on the client required corresponding

backend endpoint updates.
▪ Slowed development cycles and hindered rapid

iteration.

▪ Compromised Mobile UX
▪ High network usage and latency degraded performance

on native mobile apps.
▪ Inconsistent experience on unstable cellular

connections.

The Problem (Why)

GraphQL: not just another API

▪ GraphQL is a query language for APIs and a
server-side runtime.

▪ A powerful alternative to REST, born from specific
needs for efficiency and flexibility.

▪ Focus: allowing clients to request exactly the data they
need, nothing more, nothing less.

GraphQL
client

GraphQL
server

Datasource

Who, When, Where

▪ Developed internally by Facebook (now Meta).
▪ Key engineers: Nick Schrock, Lee Byron, Dan Schafer.

▪ 2012: internal development begins to rethink API
architecture for the shift from HTML5 mobile apps to
fully native clients.

▪ 2015: public release of the specification draft and
reference implementation as an open‑source project.

▪ 2018: GraphQL project transferred to the newly formed
GraphQL Foundation under the Linux Foundation.

▪ Declarative Queries: client specifies exactly which fields
and nested relationships it needs.

▪ Single Endpoint: all requests go through one unified API
endpoint, simplifying your network layer.

▪ Predictable Responses: server returns JSON matching
the structure of the client’s query.

▪ Strongly‑Typed Schema: a type system defines the API
contract, enabling powerful tooling and validation.

▪ Data Aggregation: seamlessly combine data from
databases, microservices, and legacy REST APIs behind one
GraphQL interface.

The Solution (What)

▪ Core Role of the Schema
▪ Serves as a rigorous contract between client and server.

▪ Defines every API capability unambiguously.

▪ Strong Typing
▪ Every object, field, and argument has a specific type.

▪ Validates client requests before execution and ensures
predictable response structure.

▪ Clear Contract
▪ Enumerates all data types, fields, and supported operations

(queries, mutations, subscriptions).

▪ Aligns frontend and backend teams around a single
authoritative API definition.

Schema Definition Language (SDL)

▪ Built‑in primitives: Int, Float, String, Boolean, ID.
▪ Use the type keyword followed by a PascalCase name.
▪ Enclose field definitions in {}.
▪ Mirrors the shape of your domain objects.

SDL: Object Types

▪ Inside an object type, list fields in camelCase.
▪ Each field has the form name: Type.
▪ No commas between fields.

SDL: Field Definitions

▪ Append ! to any type to mark it non‑nullable.
▪ The server guarantees a value or returns an error.

SDL: Non‑Null Modifier

▪ Wrap a type in [] to indicate an array of that type.
▪ Combine with ! to enforce non‑null lists or non‑null

elements.

SDL: List Modifier

▪ Query
▪ Read‑only operation.

▪ Analogous to GET in REST.

▪ Ideal for fetching data without side effects.

▪ Mutation
▪ Write operation (create/update/delete).

▪ Analogous to POST/PUT/PATCH/DELETE in REST.

▪ Used whenever you need to change server‑side state.

Interacting with Data

▪ Fetching exactly what you need.

▪ Mirrors the shape of the desired JSON response.

▪ Request only the fields and nesting you require.

Query Syntax

Query Syntax

▪ Calls a mutation field defined in the schema
(e.g., createPost).

▪ Uses Input types for complex arguments.

▪ Specifies exactly which fields to return after execution.

Mutation Syntax

▪ Queries
▪ Fields resolve in parallel (where possible).

▪ Maximizes efficiency for data fetching.

▪ Mutations
▪ Root fields execute serially, in request order.

▪ Ensures predictable, ordered state changes.

▪ Note: does not imply automatic transactional
guarantees across fields.

Execution Order

Back to Social Media Scenario

▪ Goal: fetch a user’s profile within its recent activity in one
cohesive flow.

▪ Data Requirements:

▪ User: id, username, profilePictureUrl

▪ Posts (most recent 3):

▪ for each post id, text, timestamp

▪ Comments (most recent 2 per post):

▪ for each comment id, text, commenterUsername

REST Approach
GET /users/mariospada

GET /users/mariospada/posts?limit=3&sort=desc

GET /posts/ID01/comments?limit=2&sort=desc

GET /posts/ID02/comments?limit=2&sort=desc

GET /posts/ID03/comments?limit=2&sort=desc

ServerClient

GraphQL Approach

GraphQL Approach

GraphQL Approach

QUERY /getUserProfileFeed GraphQLClient

▪ Minimal Latency: one network request for all data,
i.e., reduced round‑trip time.

▪ Precise Payloads: no over‑fetching; transfer only
requested fields, i.e., smaller, optimized responses.

▪ Shifted Complexity: server resolves complex, nested
queries across multiple data sources.

▪ Developer Productivity: frontend teams can evolve
data requirements independently, without backend endpoint
changes.

GraphQL Approach

REST vs GraphQL

REST GraphQL

API calls Multiple (e.g., GetUser, GetPosts,
GetComments x3)

Single

Endpoint Multiple (e.g., /users/{id}, /users/{id}/posts,
/posts/{id}/comments)

Single (e.g., /graphql)

Recovered Data Fixed structure per endpoint; likely
unnecessary fields (Over-fetching)

Exactly the fields specified in the query; no
superfluous data

Network Latency Major due to multiple round trips Minor due to single round trip

Payload size Potentially greater due to over-fetching Minor, optimized for the specific query

Client logic Must orchestrate multiple calls, filter/join data
Simpler data retrieval logic; response matches
query

Flexibility Low; tied to predefined endpoints High; client defines data needs per query

Lab time!

References
1. https://hygraph.com/learn/graphql
2. https://blog.mobcoder.com/graphql-vs-rest-api-is-a-comprehensive-comparison-for-

modern-development/
3. https://en.wikipedia.org/wiki/GraphQL
4. https://www.expeed.com/mastering-data-fetching-with-graphql-overcome-over-fetchi

ng-under-fetching/
5. https://www.mulesoft.com/api-university/graphql-and-how-did-it-evolve-from-rest-api
6. https://medium.com/@amoljadhav_48655/simplifying-api-client-integration-the-shift-f

rom-rest-to-graphql-965fbcb5485d

https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql
https://hygraph.com/learn/graphql

