
Journal Pre-proof

EVMLiSA: Sound Static Control-Flow Graph Construction for EVM Bytecode

Vincenzo Arceri, Saverio Mattia Merenda, Luca Negrini, Luca Olivieri and Enea Zaffanella

PII: S2096-7209(25)00111-3

DOI: https://doi.org/10.1016/j.bcra.2025.100384

Reference: BCRA 100384

To appear in: Blockchain: Research and Applications

Received date: 21 December 2024

Revised date: 30 May 2025

Accepted date: 29 July 2025

Please cite this article as: V. Arceri, S.M. Merenda, L. Negrini et al., EVMLiSA: Sound Static Control-Flow Graph Construction for EVM Bytecode,
Blockchain: Research and Applications, 100384, doi: https://doi.org/10.1016/j.bcra.2025.100384.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for
readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its
final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier.

https://doi.org/10.1016/j.bcra.2025.100384
https://doi.org/10.1016/j.bcra.2025.100384

EVMLiSA: Sound Static Control-Flow Graph
Construction for EVM Bytecode

Vincenzo Arceria,∗, Saverio Mattia Merendaa, Luca Negrinib, Luca Olivierib,
Enea Zaffanellaa

aUniversity of Parma, Parma, Italy
bUniversity Ca’ Foscari of Venice, Venice, Italy

Abstract
Ethereum enables the creation and execution of decentralized applications
through smart contracts, that are compiled to Ethereum Virtual Machine
(EVM) bytecode. Once deployed in the blockchain, the bytecode is immutable;
hence, ensuring that smart contracts are bug-free before their deployment
is of utmost importance. A crucial preliminary step for any effective static
analysis of EVM bytecode is the extraction of the control-flow graph (CFG):
this presents significant challenges due to potentially statically unknown
jump destinations. In this paper we present a novel approach, based on
Abstract Interpretation, aiming to build a sound CFG from EVM bytecode
smart contracts. Our analysis, which is implemented in our static analyzer
EVMLiSA, is based on a parametric abstract domain that approximates
concrete execution stacks at each program point as an l-sized set of abstract
stacks of maximal height h; the results of the analysis are then used to resolve
the jump destinations at jump nodes. Furthermore, EVMLiSA includes a
checker for reentrancy detection, working on the constructed CFG.

Our experiments show that, by fine-tuning the analysis parameters, EVM-
LiSA is able to build sound CFGs for all real-world smart contracts in the
considered benchmark suite. Moreover, EVMLiSA successfully detects all
reentrancy vulnerabilities in EVM bytecode smart contracts, while producing

∗Corresponding author
Email addresses: vincenzo.arceri@unipr.it (Vincenzo Arceri),

saveriomattia.merenda@studenti.unipr.it (Saverio Mattia Merenda),
luca.negrini@unive.it (Luca Negrini), luca.olivieri@unive.it (Luca Olivieri),
enea.zaffanella@unipr.it (Enea Zaffanella)

Preprint submitted to Blockchain: Research and Applications September 1, 2025

a small number of false positives.
Keywords: Static analysis, Abstract interpretation, Smart contracts, EVM
bytecode, Ethereum, Reentrancy vulnerabilities

1. Introduction

Ethereum [65] is historically one of the most popular permissionless
blockchain. The key feature of Ethereum is the ability to execute Turing-
complete smart contracts through the Ethereum Virtual Machine (EVM) [6].
Smart contracts are computer programs immutably stored in the blockchain;
once deployed, smart contracts cannot be modified: any bug or vulnerability
in their code can have irrevocable consequences, potentially causing the loss
of funds or the execution of unwanted actions. Therefore, it is of utmost
importance to make sure that smart contracts are bug-free before their deploy-
ment. To ensure this, a common technique is static analysis, which analyzes
code without actually executing it. To identify potential security issues, static
analysis often relies on suitable intermediate representations of the program
code, such as Control Flow Graphs (CFGs) [5] that embed the control paths
that might be traversed during the program’s execution in their structure.

Ethereum supports different high-level languages for smart contract devel-
opment (such as Solidity [23] or Vyper [62]), but the EVM runs only code
compiled to a low-level language called EVM bytecode. According to [38, 49],
when compared to the analysis of high-level source code, the analysis of
bytecode provides several advantages, such as the faithfulness of the instruc-
tion semantics. Also, being able to analyze bytecode is mandatory when
the source code of the smart contracts is not available. However, building
CFGs for EVM bytecode is a non-trivial task: contrary to other compiled
languages, jump destinations are computed at run-time by using the values
on the operand stack, which in general are unknown at compile-time. One
thus has to resort to sound approximations of such CFGs, that must contain
all possible execution paths that the smart contract can take at run-time to
properly identify all the vulnerabilities of interest. While building a sound
over-approximation of a CFG is trivial (since jump targets are identified
by a specific opcode, one might connect each jump to all possible targets),
reducing the number of spurious paths is crucial to ensure that the subsequent
semantic analyses are precise enough to achieve the required level of accuracy.

2

Contribution. This paper presents a novel Abstract Interpretation-based
CFG reconstruction procedure for Ethereum smart contracts. Our approach
targets the EVM bytecode produced by the compilation step and is thus
agnostic w.r.t. the source-level language used to develop the contracts. In
summary:

• we propose an abstract domain for tracking the operand stacks reaching
each opcode;

• we present an algorithm exploiting the abstract stacks to detect possible
jump targets, introducing new edges into the (partial) CFGs; we iterate
such algorithm up to a fixpoint, building a final CFG that soundly over-
approximates the concrete CFG up to some configuration parameters;

• we develop EVMLiSA, an open-source, fully automated, Abstract Inter-
pretation-based static analyzer for EVM bytecode, leveraging the sound
CFG construction method described in this paper;

• we evaluate the precision of EVMLiSA in reconstructing CFGs using a
benchmark suite of real-world smart contracts retrieved from Etherscan;

• we implement a checker in EVMLiSA to detect reentrancy vulnerabilities,
and we compare EVMLiSA to a state-of-the-art static analyzer for
EVM bytecode on two real-world smart contract benchmark suites,
demonstrating that EVMLiSA detects all reentrancy bugs with few
false positives.

This paper is a revised and extended version of [7]. The main extensions
with respect to [7] are described in the following:

• we formally define the abstract stack set domain and improve the jump
resolution algorithm to produce a sound CFG, providing a formal proof
of its soundness;

• we refine the experimental evaluation on the same benchmark used
in [7], now analyzing all smart contracts of the benchmark, rather than
only a limited subset consisting of 500 smart contracts;

• we further extend the evaluation by comparing our jump resolution
strategy, implemented in EVMLiSA, with four state-of-the-art tools:
EtherSolve [50], Gigahorse [29], Mythril [12], and Vandal [10];

3

• we also implement a reentrancy checker that leverages the CFG con-
structed by EVMLiSA and compare it with EtherSolve, Mythril and
Vandal, on two popular datasets of smart contracts, SolidiFI and Smart-
Bugs.

Paper structure. Section 2 provides an overview of the EVM bytecode,
discusses the problem of resolving the target of jumps, and introduces the
necessary mathematical notions. Section 3 introduces the concrete semantics
of EVM bytecode. Section 4 describes our approach for reconstructing CFGs
by resolving the targets of jump instructions in EVM bytecode. In Section 5,
we introduce EVMLiSA, an Abstract Interpretation-based static analyzer for
EVM bytecode, in which we implement our CFG reconstruction approach.
We evaluate its precision in constructing sound CFGs for real-world smart
contracts collected from Etherscan and compare its performance with state-of-
the-art tools. This section also presents the reentrancy checker implemented
by EVMLiSA and compare its performance in detecting reentrancy bugs with
state-of-the-art static analyzers for EVM bytecode on two benchmark suites.
Section 6 discusses related work. Section 7 concludes the paper.

2. Preliminaries

This section provides an overview of the essential concepts and the termi-
nology necessary for understanding the contents of this paper.

2.1. EVM Bytecode and Jump Instructions
EVM bytecode is a Turing-complete, stack-based, low-level language

consisting of ∼150 instructions called opcodes.1 These are interpreted by the
EVM to manipulate a 1024-sized stack whose items are 256-bit words. Each
instruction is encoded as a hexadecimal number, starting with 0x. Let us
consider a simple fragment of EVM bytecode: 60 01 60 02 01. The byte 60
corresponds to the PUSH1 opcode, which pushes a byte onto the stack. The
pushed byte is the one following the opcode, i.e., 01. Similarly, the bytes 60
02 correspond to the EVM instruction PUSH1 0x02. The last byte, i.e., 01,
corresponds to the ADD opcode, whose semantics pops two items from the
stack, sums them, and pushes the result onto the stack. Thus, the translated
human-readable version of the bytecode string previously analyzed is:

1The full list of EVM opcodes is available at [65].

4

PUSH1 0x01 PUSH1 0x02 ADD

and, after its execution, the item at the top of the stack is the 256-bit value
3 (see Figure 1).

Stack

1

Stack

1

2

Stack

3

It pushes the integer
value 1 on the stack

PUSH1 0x01 ADD

It consumes two values on the
top of the stack. After, it performs
an addition and pushes the result
on the top of the stack

PUSH1 0x02

It pushes the integer
value 2 on the stack

Figure 1: Execution of a EVM bytecode that computes the addition of two integers.

2.1.1. Altering the flow of execution.
The execution flow of a contract written in EVM bytecode starts with

the first opcode and proceeds sequentially. The only EVM opcodes that can
alter the flow of execution of a smart contract, without halting,2 are JUMP
and JUMPI. The JUMP instruction consists of an unconditional jump to the
location at the address stored in the topmost item of the stack (which is
popped off). For instance, let us consider the following fragment:

PUSH1 0x10 PUSH1 0x20 JUMP

When the JUMP instruction is met, it finds the value 0x20 at the top of the
stack. Thus, the value 0x20 is popped from the stack, the program counter is
set to 0x20, and the execution proceeds from the instruction at that address.
Figure 2a shows the execution of the instructions until the JUMP.

Instead, the JUMPI instruction consists of a conditional jump: the execution
jumps to the address stored on the topmost item of the stack only if the
second topmost item is non-zero; otherwise, the execution proceeds without
jumping. In both cases, the two topmost stack elements are popped off the
stack. Figure 2b shows the execution of the previous example using JUMPI
instead of JUMP.

2Execution can halt: (a) implicitly, when the program runs to completion; (b) explicitly,
when processing the halting opcodes STOP, RETURN, REVERT, SELFDESTRUCT, INVALID; or
(c) exceptionally, when facing illegal conditions (e.g., stack underflow).

5

Note that the target location of a jump instruction must correspond to
a JUMPDEST opcode, otherwise, the execution will halt exceptionally. The
JUMPDEST instruction does not alter the stack: its only purpose is to flag the
locations to which a (conditional or unconditional) jump is allowed.

Stack

16

32

It pushes the integer
value 16 on the stack

PUSH1 0x10 JUMP

It consumes the value on the top
of the stack. After, it set the
program counter to 0x20

PUSH1 0x20

It pushes the integer
value 32 on the stack

<opcode at 0x20>
...

the execution proceeds
from the instruction at
the address 0x20

Stack

16

Stack

16

(a) JUMP

Stack

16

32

It pushes the integer
value 16 on the stack

PUSH1 0x10 JUMPI

It consumes the two value on the
top of the stack. After, it set the
program counter to 0x20
because 16 is a non-zero value

PUSH1 0x20

It pushes the integer
value 32 on the stack

<opcode at 0x20>
...

the execution proceeds
from the instruction at
the address 0x20

Stack

16

Stack

(b) JUMPI

Figure 2: Executions of EVM bytecodes that perform jump operations.

2.1.2. Orphan Jumps
As shown above, the locations to which JUMP and JUMPI opcodes jump are

not hardcoded as data in the instruction syntax (as, e.g., for the value pushed
onto the stack by the PUSH1 opcode); rather, the location is dynamically com-
puted by inspecting the items on the stack. Nonetheless, there are cases where
it is easy to statically predict the destination of a jump instruction without
actually executing the smart contract. For instance, in the two fragments
analyzed previously, the destinations of the JUMP and JUMPI instructions are
easily deduced from the source code, because the two opcodes are syntactically
preceded by a PUSH instruction (in both cases PUSH1 0x20). Borrowing the
terminology from [50], we call these instructions pushed jumps.

Pushed jumps pose no problem for the construction of the CFG since jump
targets can be syntactically resolved. A more challenging class of jumps to
resolve is the one of the so-called orphan jumps [50]. A simple yet expressive
example of an orphan jump is:

6

Stack

10

It pushes the integer
value 10 on the stack

PUSH1 0x0A ADD

It consumes two values on the
top of the stack. After, it performs
an addition and pushes the result
on the top of the stack

PUSH1 0x0C

It pushes the integer
value 12 on the stack

Stack

10

12

Stack

22 JUMP

It consumes the value on the top of the stack. After, it set the
program counter to 0x16 (22 in decimal). Note that the value is not
hardcoded in the code and is the result of runtime computation

<opcode at 0x16>
...

The execution proceeds
from the instruction at
the address 0x16

Stack

Figure 3: Execution of a EVM bytecode that performs an orphan jump.

PUSH1 0x0A PUSH1 0x0C ADD JUMP

In this case, as reported in Figure 3, the target of the JUMP instruction cannot
be immediately determined from a syntactic inspection of the source code.
To properly resolve the jump, one has to compute the result of the ADD
opcode. Thus, to build a precise CFG, a program analysis that can deduce
the possible contents of the stack at run-time is needed, taking into account
each instruction’s semantics.

2.2. Order Theory and Abstract Interpretation
We briefly recall some basic concepts of order theory and Abstract In-

terpretation, also introducing the required notation: interested readers are
referred to [41, Section 2].

A poset ⟨X,⊑⟩ is a set X equipped with a partial ordering relation
⊑ ⊆ X × X. A (bounded) lattice ⟨X,⊑,⊔,⊓,⊥,⊤⟩ is a poset having a
minimum element (bottom, ⊥ ∈ X), a maximum element (top, ⊤ ∈ X) and
closed under finitary applications of the least upper bound (lub, ⊔) and the
greatest lower bound (glb, ⊓) operators; namely, for all x0, x1 ∈ X, both
x0 ⊔ x1 ∈ X and x0 ⊓ x1 ∈ X. A complete lattice is closed under arbitrary
lub and glb, so that ⊔

Y ∈ X and
d

Y ∈ X, for all Y ⊆ X. Given a set S,
the powerset lattice ⟨℘(S),⊆,∪,∩, ∅, S⟩ is complete.

Given a poset ⟨X,⊑⟩, a chain C ⊆ X is a totally ordered subset of X; a
poset is complete (cpo) if all his chains C have a least upper bound ⊔

C ∈ X;
all complete lattices are cpo. We will often denote a chain as a (possibly
infinite) sequence of elements x0, . . . , xi, xi+1, . . . , where i ≤ j =⇒ xi ⊑ xj;
a poset satisfies the ascending chain condition (ACC) if for all its ascending
chains C = x0, . . . , xi, xi+1, . . . there exists k ∈ N such that ∀j ≥ k . xj = xk.
Equivalently, we say that ⟨X,⊑⟩ is ACC; note that an ACC poset is a cpo.

Given a poset ⟨X,⊑⟩, a function f : ⟨X,⊑⟩ → ⟨X,⊑⟩ is monotone if
∀x, y ∈ X : x ⊑ y =⇒ f(x) ⊑ f(y); if ⟨X,⊑⟩ is a cpo, then f is

7

continuous if f(⊔
C) = ⊔

xi∈C f(xi) for all chains C. The n-th iterate fn

of f : ⟨X,⊑⟩ → ⟨X,⊑⟩ starting at x0 ∈ X, is defined as f 0 = x0 and
fn+1 = f(fn); the iterates of a monotone function starting at ⊥ form an
ascending chain. An element x ∈ X such that x = f(x) is a fixpoint of f ; it
is the least fixpoint if ∀y ∈ X : y = f(y) =⇒ x ⊑ y.

Abstract Interpretation [15, 14] is a theoretical framework for sound rea-
soning about semantic properties of a program, establishing a correspondence
between the concrete semantics of a program and an approximation of it,
called abstract semantics. The first formulation of the Abstract Interpretation
framework relied on Galois Connection (GC): let ⟨C,≤⟩ and ⟨A,⊑⟩ be posets,
a pair of monotone functions α : ⟨C,≤⟩ → ⟨A,⊑⟩ and γ : ⟨A,⊑⟩ → ⟨C,≤⟩
forms a GC if ∀x ∈ C, ∀y ∈ A : α(x) ⊑ y ⇔ x ≤ γ(y). A GC requires
the existence of a best abstraction, which can be too restrictive. Abstract
Interpretation has been thus formalized also under more relaxed hypotheses:
in fact, a monotone function γ : ⟨A,⊑⟩ → ⟨C,≤⟩ is enough to establish a
correctness (i.e., soundness) relation, without the need for a GC.

The concrete semantics of a program is classically defined as the least
fixpoint lfpf of a continuous function f : C → C on a complete lattice ⟨C,⊑
,⊔,⊓,⊥,⊤⟩ (the concrete computation domain). By Kleene’s theorem, this
can be computed as the limit of its iterates: lfpf = ⊔

n∈N fn. In general, such
a limit is not finitely computable. Hence, a corresponding monotone abstract
semantic function g : A→ A that correctly over-approximates f : C → C can
be defined on the abstract computation domain ⟨A,⊑♯⟩ (having a bottom
element ⊥♯ ∈ A): namely, g is sound w.r.t. f if ∀a ∈ A : f(γ(a)) ⊑ γ(g(a)).
The abstract iterates of g starting from ⊥♯ form an increasing chain whose
elements correctly over-approximate the corresponding concrete iterates, i.e.,
fn ⊑ γ(gn) for all n ∈ N. The abstract domain is not required to be a
complete lattice: if it is an ACC poset, then the abstract increasing chain
will converge in a finite number k ∈ N of steps to an abstract element gk ∈ A
that correctly over-approximates the concrete least fixpoint.

3. EVM Language and Semantics

We now formally define what an EVM program is, together with its
concrete semantics. An EVM program is simply a sequence of opcodes
op ∈ O. When deployed on the blockchain, each opcode is stored at an
address ℓ, that can be used to target the opcode through jumps, effectively
working as a program counter (two opcodes cannot share the same ℓ). We

8

denote the set of all possible addresses as L ⊆ N ∪ {ϵ}, with ϵ being the
empty label, i.e., a label pointing to no opcode that will be used to signal
termination of the execution. Given an address ℓ ∈ N, we denote with Π(ℓ)
the opcode corresponding to that address. We denote next(ℓ) the address of
the opcode naturally following opcode Π(ℓ) in the program text. When ℓ is
the final opcode in the program, we define next(ℓ) = ϵ.

Following the documentation [65], each opcode pops δ ∈ N existing
elements from the stack, pushes ρ ∈ N new elements on the stack, and may
have parameters (e.g., PUSH1 is followed by the byte to push on the stack).
Thus, we denote an opcode op happening at an address ℓ as ℓopρ

δ , embedding
the parameters in the opcode definition.

An operand stack s = [z0, . . . , zn−1] is a LIFO list of length |s| = n + 1 ≤
1024 (with |[]| = 0), containing elements zi ∈ Z (since the operand stack’s
elements are 256-bit words, we can refer to them as integer numbers regardless
of the type of value they represent). The set S of all operand stacks also
contains the invalid stack ⊥S resulting from erroneous computations.

Program states ⟨s, ℓ⟩ ∈ M are pairs of a stack s ∈ S and the address ℓ ∈ L
of the opcode to be executed (i.e., the program counter). The special state
⊥ ≜ ⟨⊥S, ϵ⟩ ∈ M denotes an execution error, that corresponds to the EVM
halting the execution by raising an exception.

Opcode’s semantics is defined through function JopK : M→ M that given
an input program state in M yields the new state in M after the execution
of op. Note that, for any opcode op, Jℓopρ

δK⊥ = ⊥, and Jℓopρ
δK⟨ℓ′, s⟩ = ⊥

if ℓ ̸= ℓ′. All non-jumping and non-halting opcodes have similar semantics
(where s = [z0, . . . , zn−1]):

Jℓopρ
δK⟨s, ℓ⟩ =


⊥, if |s| < δ or

|s| − δ + ρ > 1024;
⟨[z0, . . . , zn−1−δ, ż0, . . . , żρ−1], next(ℓ)⟩, otherwise.

Namely, the semantics returns ⊥ when facing a stack underflow (i.e., there
are not enough stack elements to pop) or a stack overflow (i.e., the size of
the stack after the execution would be greater than 1024). Otherwise, the
top-most δ values are removed from the operand stack and used for the
computation of ρ new values ż0, . . . , żρ−1; after adding these on top of the
operand stack, the execution moves to the natural successor of the opcode.
Example 3.1. For instance, consider the opcode ADD which pops two values
from the stack, sums them, and pushes the result on top of the stack. In this

9

case, δ = 2 and ρ = 1. Suppose the stack is s = [z0, z1, z2] and the opcode is at
address ℓ. The execution of ADD will yield the new state ⟨[z0, z1 + z2], next(ℓ)⟩
since (i) there are enough stack elements to pop (i.e., |s| = 3 ≥ 2) and the
resulting stack’s height is within the limits (i.e., |s| − 2 + 1 = 2 ≤ 1024).
Instead, if the stack is s = [z0], the execution of ADD will yield ⊥ since there
are not enough values to pop from the stack (i.e., |s| = 1 < 2).

Since the computation of ż0, . . . , żρ−1 is opcode-specific and outside the
scope of our work (i.e., it does not modify the control flow), it is omitted
from this manuscript. Instead, we define the semantics of JUMP and JUMPI,
since they affect the control flow.

Unconditional jump. The semantics of the unconditional jump opcode
JUMP is defined as (where s = [z0, . . . , zn−1]):

JℓJUMP0
1K⟨s, ℓ⟩ =

⊥, if |s| < 1 ∨ Π(zn−1) ̸= JUMPDEST;
⟨[z0, . . . , zn−2], zn−1⟩, otherwise.

Namely, the opcode’s execution removes one value from the stack and inter-
prets it as the address of the next instruction. If the opcode at that address
is a JUMPDEST, the execution proceeds from there; otherwise, ⊥ is returned
as the EVM will raise an exception.

Conditional jump. The semantics of the conditional jump opcode JUMPI
is defined as (where s = [z0, . . . , zn−1]):

JℓJUMPI0
2K⟨s, ℓ⟩ =


⊥, if |s| < 2 ∨

(zn−2 ̸= 0 ∧ Π(zn−1) ̸= JUMPDEST);
⟨[z0, . . . , zn−3], zn−1⟩, if zn−2 ̸= 0;
⟨[z0, . . . , zn−3], next(ℓ)⟩, otherwise.

Namely, the opcode’s execution removes two values from the stack: zn−2
determines whether the execution should branch, while zn−1 is used as the
address of the next instruction if the branch is taken. If the opcode at that
address is a JUMPDEST, the execution proceeds from there; otherwise, ⊥ is
returned as the EVM will raise an exception. Note that, JUMPI ignores zn−1
entirely if zn−2 is equal to 0: in that case, zn−1 is discarded (popped from the
stack) without any check and does not lead to any exception if it would point
to something other than a JUMPDEST.

Program Execution. An EVM program P = ℓ0op0
ρ0
δ0 . . . ℓkopk

ρk
δk

can be
executed through function Ξ: O⋆ × M→ M that given a program (a sequence

10

of k ∈ N opcodes in O) and an input state in M returns an output state in M.
Ξ is defined recursively as:

Ξ(P, ⟨s, ℓ⟩) =


⟨[], ϵ⟩, if ℓ = ϵ or Π(ℓ) ∈ {STOP, SELFDESTRUCT};
⟨s, ϵ⟩, if Π(ℓ) ∈ {RETURN, REVERT};
Ξ(P, ⟨s′, ℓ′⟩), if JΠ(ℓ)K⟨s, ℓ⟩ = ⟨s′, ℓ′⟩ ̸= ⊥;
⊥, otherwise.

Intuitively, the first two cases model program termination, either implicitly
(when ℓ = ϵ) or explicitly (when executing a halting opcode): execution is
stopped by setting the program counter to ϵ and providing the return values
if needed; in the third case, we perform a single non-exceptional program step
and proceed computing from state ⟨s′, ℓ′⟩; the last case models the program
halting due to the computation of an erroneous state. Following the same
technique, we also define the partial execution function Ξℓ, which executes
the program P until the program counter reaches ℓ ̸= ϵ. This function is
defined as:

Ξℓ(P, ⟨s, ℓ⟩) =



⟨s, ℓ⟩, if ℓ = ℓ;
⊥, if ℓ = ϵ or Π(ℓ) ∈ {STOP, SELFDESTRUCT};
⊥, if Π(ℓ) ∈ {RETURN, REVERT};
Ξℓ(P, ⟨s′, ℓ′⟩), if JΠ(ℓ)K⟨s, ℓ⟩ = ⟨s′, ℓ′⟩ ̸= ⊥;
⊥, otherwise.

The objective of Ξℓ is to extract the states that can reach ℓ: hence, it executes
the program P until the execution reaches ℓ, returning the state produced
(first case); the remaining cases are handled as before, except that if the
execution terminates (no matter if in an erroneous state or with an opcode
that halts the program), Ξℓ always returns ⊥, so as to signal that ℓ has not
been reached.

Example 3.2. For instance, consider the program fragment:

P = 0PUSH1 0x011
0

1PUSH1 0x021
0

2ADD1
2

3JUMP0
1

The execution of Ξ(P, ⟨[], 0⟩) and Ξ3(P, ⟨[], 0⟩) will start in the same way:
the first opcode (i.e., the one labelled with 0) is executed, and the stack
becomes [1] with the program counter set to next(0) = 1. The second opcode

11

(i.e., the one labelled with 1) is then executed, and the stack becomes [1, 2]
with the program counter set to next(1) = 2. The execution proceeds with the
third opcode (labelled with 2), with the stack becoming [3] and the program
counter becoming next(2) = 3. Here, Ξ and Ξ3 behave differently: the latter
returns ⟨[3], 3⟩, since the destination label has been reached, while the former
yields ⊥, because the destination of the jump (Π(3)) is not a JUMPDEST.

4. Construction of EVM Bytecode CFGs

In general, computing (properties of) the semantics of a program is known
to be an undecidable problem [54]. Suitable restrictions can yield decidability,
such as choosing a programming language that is not Turing complete and/or
bounding the resources available (e.g., by providing a finite amount of gas).
However, even when the semantics is formally decidable, its computation
typically incurs an exponentially high, unfeasible computational cost. Thus,
following the Abstract Interpretation framework, one can over-approximate
the semantic function Ξ so as to make it computable in a finite and often
reasonable amount of time. The over-approximation boils down to computing
abstract invariants by, e.g., solving equations systems [17], executing the
program on an inductive abstract interpreter [41], or computing a fixpoint
over the program’s control flow graph [15]. Regardless of the chosen strategy,
computing such invariants requires considering the control flow of the EVM
program given as argument of Ξ, that is not statically known.

The main contribution of this paper is an algorithm for constructing sound
CFG (Definition 1) for EVM programs, thus enabling Abstract Interpretation.
A CFG of a program P is a directed graph GP = (N, E) that expresses its
control flow. In a CFG, the nodes N are the addresses of all opcodes and the
edges E ⊆ N ×N express how the execution flows from one node to another.
This means that all the syntactic constructs that form loops, branches, and
arbitrary jumps are directly encoded in the CFG structure, simplifying the
code to analyze.

Definition 1 (Sound CFG). Given an EVM program P whose first label is
ℓ0, GP = (N, E) is a sound CFG of P if, for all ℓopρ

δ ∈ P, we have ℓ ∈ N and{
ℓ→ ℓ′

∣∣∣ ∃s, s′ ∈ S . Ξℓ(P, ⟨[], ℓ0⟩) = ⟨s, ℓ⟩ ∧ Jℓopρ
δK⟨s, ℓ⟩ = ⟨s′, ℓ′⟩

}
⊆ E

that is, if every opcode is connected to every possible successor it can have at
runtime.

12

As stated in Section 1, building a sound CFG entails reasoning on the
possible values (i.e., stacks) computed by the program. To build sound
CFGs, we rely on an iterative algorithm based on the Abstract Interpretation
framework, consisting of (i) computing an over-approximation of the possible
operand stacks computed by the program, (ii) using the stacks reaching JUMP
and JUMPI opcodes to determine where they might jump, and (iii) repeating
the first two steps until the CFG is complete.

4.1. Abstracting computed values
For resolving jump destinations, our analysis relies on an abstract domain

of l-sized sets of h-sized stacks, with h, l > 0, whose elements are an abstraction
of the possible integer values computed by a program’s opcodes. We define
such a domain in a bottom-up fashion, starting from the abstraction of
individual elements.

Definition 2 (Stack elements). Z♯ ≜ Z ∪ {∅,⊤Z,⊤Z♯} is the set of possible
stack elements, where ∅ is an empty (i.e., not yet initialized) stack element,
⊤Z is an element that is guaranteed to not be the label of a JUMPDEST, and
⊤Z♯ is an unknown element.

Z♯ thus contains all integer values, together with special symbols to denote
stack elements with special values. The introduction of ⊤Z is motivated by
the need to distinguish values that are not valid jump destinations, as shown
in the following example.

Example 4.1. Unusual and tricky sequences of opcodes may arise, being
EVM bytecode a low-level language generated by high-level languages. For
example, let us consider the following fragment: TIMESTAMP JUMP. The first
opcode pushes the current block’s timestamp onto the stack. Then, the JUMP
opcode takes the value on top of the stack and attempts to jump to that
position in the code. Although it is a valid operation, in a real-world scenario
it is unlikely that the value generated by TIMESTAMP would be used as a jump
destination. Thus, the semantics of TIMESTAMP will produce ⊤Z.3

3The full list of opcode that push ⊤Z is: GAS, SHA3, CALLCODE, DIFFICULTY,
ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, RETURNDATASIZE,
COINBASE, TIMESTAMP, NUMBER, GASLIMIT, CHAINID, SELFBALANCE, MSIZE, BASEFEE,
BALANCE, CALLDATALOAD, EXTCODESIZE, EXTCODEHASH, BLOCKHASH, CREATE, CREATE2, CALL,
DELEGATECALL, STATICCALL.

13

In the remainder of this paper, we denote concrete stack elements with
z ∈ Z and abstract stack elements with v ∈ Z♯. We now define the h-sized
abstract stacks, approximating concrete stacks with their top h elements.

Definition 3 (h-sized abstract stacks). Sh ≜ {[v0, . . . , vh−1] | ∀i ∈ [0, h− 1] :
vi ∈ Z♯}∪{⊥Sh

} is the set of stacks having exactly h elements from Z♯, where
the top of the stack is the right-most element vh−1, with a special stack ⊥Sh

denoting an invalid stack.

Note that concrete stacks having fewer than h elements are modeled by
abstract stacks with exactly h elements, filling the missing elements with (a
prefix made of) ∅ ∈ Z♯. For instance, Figure 4 depicts abstract stacks of S4.

An h-sized abstract stack provides an abstraction of a single stack, that
is, of a single execution. To lift our reasoning to all possible executions, we
abstract sets of stacks reaching each opcode instead (that is, elements of the
concrete powerset lattice ⟨℘(S),⊆,∪,∩, ∅, S⟩). Thus, we define the abstract
stack powerset domain S l

h, consisting of sets with at most l abstract stacks of
height h.

Definition 4 (l-sized abstract stacks set domain). ⟨S l
h,⊆⟩, where S l

h ≜
℘≤l(Sh), is the poset of l-sized sets of h-sized abstract stacks.

Here, ℘≤l(Sh) ⊆ ℘(Sh) is a subset of the powerset of Sh containing only
sets with at most l abstract stacks, together with Sh itself at the top of the
poset. In the remainder of this work, we denote concrete stacks and their
sets with s ∈ S and S ∈ ℘(S), respectively, and abstract stacks and their sets
with ŝ ∈ Sh and Ŝ ∈ S l

h, respectively. Note that ⊆ is still a partial order on
℘≤l(Sh). Also note that ∪ is no longer an appropriate lub operator, since it
can produce sets with more than l elements; we thus define the lub ⊔Sl

h
as:

Ŝ1 ⊔Sl
h

Ŝ2 ≜

Ŝ1 ∪ Ŝ2, if |Ŝ1 ∪ Ŝ2| ≤ l;
Sh, otherwise.

In Appendix A.1, we show that ⟨S l
h,⊆,⊔Sl

h
,∩, ∅,Sh⟩ forms a complete ACC

lattice.
Following the Abstract Interpretation framework, we now define means to

concretize elements of ⟨S l
h,⊆,⊔Sl

h
,∩, ∅,Sh⟩ to elements of ⟨℘(S),⊆,∪,∩, ∅, S⟩.

We start by defining function γ̇, parametric on the program P, converting a
stack element to the possible integers it corresponds to.

14

Definition 5 (Concretization of stack elements γ̇). Let JDP = {ℓ ∈ L | Π(ℓ) =
JUMPDEST} be all labels ℓ of program P corresponding to JUMPDEST opcodes.
Function γ̇ : Z♯ → ℘(Z) is defined as:

γ̇(v) ≜


∅, if v = ∅;
Z \ JDP, if v = ⊤Z;
Z, if v = ⊤Z♯ ;
{v}, otherwise.

where concretizes individual stack elements to the concrete integers they
abstract.

We then define γ, responsible for transforming an h-sized abstract stack
into the set of concrete stacks it over-approximates.

Definition 6 (Concretization of abstract stacks γ). Given two stacks s1 =
[x0, . . . , xj] and s2 = [y0, . . . , yk], we denote s1 ◦ s2 their concatenation, i.e.,
the stack [x0, . . . , xj, y0, . . . , yk]. For ŝ = [v0, . . . , vh−1], let

k∅ ≜ max{k ∈ [0, h] | ∀i ∈ [0, k − 1] . vi = ∅};
k⊤ ≜ max{k ∈ [0, h] | ∀i ∈ [0, k − 1] . vi = ⊤Z♯};

γ′(ŝ) ≜

{[zk∅ , . . . , zh−1] | ∀i ∈ [k∅, h− 1] : zi ∈ γ̇(vi)}, if k∅ > 0;
{s ◦ [zk⊤ , . . . , zh−1] | ∀i ∈ [k⊤, h− 1] : zi ∈ γ̇(vi), s ∈ S}, if k∅ = 0.

Then, the concretization function γ : Sh → ℘(S) is defined as

γ(ŝ) ≜

⊥S, if ŝ = ⊥Sh
;

γ′(ŝ), otherwise.

Hence, an abstract stack concretizes to all possible concrete stacks whose
heads (i.e., the top-most h elements) are compatible with the concretizations
of the elements of the abstract stack. Note that, in the definition above,
k∅ > 0 implies that the abstract stack ŝ can only describe concrete stacks
having exactly h− k∅ elements (hence, if k∅ = h, only the empty stack [] is
described); otherwise, if k∅ = 0, then ŝ describes concrete stacks having at
least h− k⊤ elements.

Finally, we define function γ to concretize elements of S l
h to sets of concrete

stacks.

15

Definition 7 (Concretization of sets of abstract stacks γ). Function γ :
S l

h → ℘(S), defined as:
γ(Ŝ) ≜

⋃
ŝ∈Ŝ

γ(ŝ)

concretizes a set of abstract stacks to the concrete stacks it approximates.

Thus, the concretization of a set of abstract stacks corresponds to all the
concrete sets obtained by concretizing the abstract stacks one at a time. The
monotonicity of γ is proven in Appendix A.2.

Abstract semantics of S l
h. Since the evolution of the program counter ℓ is

embedded in the CFG (i.e., successors are made explicit through CFG edges),
S l

h, as well as any other analyses running on the CFG, just needs to over-
approximate the possible stacks in s ∈ S computed by each node. We thus
define the abstract semantics of S l

h through function JopK♯ : S l
h → S l

h, that
will provide an over-approximation of what JopK : ℘(S)→ ℘(S) computes over
⟨℘(S),⊆,∪,∩, ∅, S⟩ (here, JopK is defined, abusing notation, as the additive
lift of function JopK from Section 3).

We first define a few auxiliary functions operating on abstract stacks.
Function top : Sh → Z♯ returns the top (i.e., rightmost) element of the

stack (without removing it); it is defined as

top(ŝ) ≜

vh−1, if ŝ = [v0, . . . , vh−1];
∅, otherwise (ŝ = ⊥Sh

).

Function push : Sh × Z♯ → Sh pushes a new stack element at the top an
abstract stack, taking into account the maximal size h. This translates to
shifting down (i.e., left) all the elements of the stack, removing the bottom (i.e.,
left-most) element and adding the new element in the top (i.e., right-most)
position. Letting ŝ = [v0, v1, . . . , vh−1] ∈ Sh and v ∈ Z♯, push is defined as:

push(ŝ, v) ≜ [v1, . . . , vh−1, v].

We also define push(⊥Sh
, v) ≜ ⊥Sh

. By extension, for each n ∈ N, we define
pushn : Sh × Z♯n → Sh pushing a sequence of n stack elements on top of a
stack as:

pushn(ŝ, v1, v2, . . . , vn) ≜

ŝ, if n = 0;
pushn−1(push(ŝ, v1), v2, . . . , vn), otherwise.

16

Function pop : Sh → Sh pops the top (i.e., right-most) element from an
abstract stack, while filling the bottom (i.e., left-most) element with either
⊤Z♯ or ∅. Specifically, ∅ is used when it is guaranteed that no other element
exist beyond the ones already present in the stack: this only happens when
the current bottom element is ∅ itself. Otherwise, there is no guarantee on
the size of the concrete stacks (intuitively, the bottom element of the abstract
stack might be the last element as well as an intermediate one), and we use
⊤Z♯ as the new bottom element. Formally, if ŝ = [v0, . . . , vh−2, vh−1] ∈ Sh:

pop(ŝ) ≜

[∅, v0, . . . , vh−2], if v0 = ∅;
[⊤Z♯ , v0, . . . , vh−2], otherwise.

Again, we define pop(⊥Sh
) ≜ ⊥Sh

.
By extension, for each n ∈ N, we define popn : Sh → Sh popping n stack

elements from top of a stack as:

popn(ŝ) ≜

ŝ, if n = 0;
popn−1(pop(ŝ)), otherwise.

Note that the abstract semantics will never push the abstract element
∅ ∈ Z♯ on an abstract stack; hence, when starting from the abstract stack
[∅, . . . ,∅] (describing the empty concrete stack) and applying sequences of
push/pop operations, all ∅ elements (if any) will always appear at the bottom
end of the stack. Hence, we can define function height : Sh → N, counting the
number of non-∅ elements in an abstract stack, as follows

height(ŝ) ≜

h− k∅, if ŝ ̸= ⊥Sh
;

0, otherwise,

where for each ŝ = [v0, . . . , vh−1] ∈ Sh the index k∅ is computed as specified
in Definition 6.

As an example, in Figure 4b we show the result of abstractly executing
the EVM bytecode PUSH1 0x06 when starting from the abstract stack of
Figure 4a. It should be noted that all the concrete stacks approximated by
the abstract stack in Figure 4a are known to have exactly 3 elements (because
the element at depth 4 is ∅); in contrast, the abstract stack of Figure 4b
describes a set of concrete stacks having at least 4 elements, but possibly

17

4
2
1
∅
(a)

6
4
2
1

(b)

4
2
1
⊤Z♯

(c)

Figure 4: Examples of abstract stacks, elements of S4.

more.4 Instead, the abstract stack in Figure 4c, which is obtained by popping
an element from the abstract stack of Figure 4b, describes concrete stacks
having at least 3 elements. Finally, the height of the three abstract stacks is
respectively 3, 4, and 4.

We can now define the abstract semantics JopK♯ of S l
h as:

Jℓopρ
δK

♯Ŝ ≜
⋃
ŝ∈Ŝ

{Jℓopρ
δK

♯ŝ}

where we define, by abusing notation, JopK♯ : Sh → Sh as:

Jℓopρ
δK

♯ŝ ≜

⊥Sh
, if ŝ = ⊥Sh

∨ height(ŝ) < δ;
pushρ(popδ(ŝ), v̇0, . . . , v̇ρ−1), otherwise.

The abstract semantics thus evolves each individual stack in isolation. The
abstract semantics on individual stacks returns ⊥Sh

if there are not enough
elements to pop, or if ⊥Sh

is passed as input stack. Otherwise, it pops δ
stack elements and pushes ρ new elements v̇0, . . . , v̇ρ−1 on top of the stack.
Similarly to the concrete semantics, the computation of v̇0, . . . , v̇ρ−1 is omitted
from this work as it is opcode-specific and does not modify the control flow.5
Note that we do not need to define specific semantics for JUMP and JUMPI:
the peculiarity of these operands is the modification of the program counter,
that will be addressed in Section 4.2. Appendix A.3 reports the soundness
proof of JopK♯.

4The maximum size of any concrete EVM stack is 1024 and the program execution
halts exceptionally if the stack grows beyond this limit; we obviously consider here the
case h < 1024.

5Intuitively, the computation happens concretely whenever all operands are elements of
Z; instead, ⊤Z and ⊤Z♯ are propagated in the result as-is.

18

Pseudocode 1 (Build CFG algorithm.)
1: function buildCFG(P, h, l, conservative)
2: GP ← partialCFG(P)
3: do
4: changed ← jumpSolver(GP, h, l, conservative)
5: while changed;
6: return GP;
7: end function

4.2. Resolving Jumps
This section introduces the general iterative algorithm to build a sound

CFG GP of an EVM program P by exploiting S l
h. To illustrate how the

algorithm works, let us consider as running example the bytecode fragment
shown in Figure 5a, with an orphan JUMPI (each opcode is preceded by the
program counter).

The pseudocode implementing the construction of the CFG of an EVM
bytecode program is reported in Pseudocode 1 with function buildCFG. The
function takes as input an EVM bytecode program, the parameters h and
l for the abstract stacks sets analysis of Definition 4, and the Boolean flag
conservative, whose meaning will be explained shortly; it starts by building a
partial CFG, i.e., a control-flow graph with no jump destination resolved (line
2 with function partialCFG). Considering the running example reported in
Figure 5a, the CFG obtained by this operation is the one reported in Figure 5c.
Note that just the false branch of the orphan JUMPI has been resolved in
this phase (i.e., the red edge JUMPI ff→ INVALID), since it corresponds to the
opcode syntactically occurring after the JUMPI instruction in the source code.

buildCFG then proceeds by iteratively adding edges to this CFG by
successive invocations of jumpSolver (Pseudocode 2) at line 4, until no
more edges are added.

jumpSolver relies on the analysis of abstract stacks sets of Definition 4
(line 2 of Pseudocode 2) to resolve the target destination of the orphan jumps
on the input (and potentially partial) CFG. This operation computes the
entry and exit invariants for each node of the CFG, i.e., the abstract stacks
that the node takes as input and the resulting stacks after applying the
abstract semantics of the opcode. Note that nodes that are unreachable (i.e.,
no path exists leading to them from the first opcode) are associated with a
bottom state. In our running example we consider h = 4 and l = 1.

19

0: PUSH1 0x05
2: PUSH1 0x05
4: EQ
5: PUSH1 0x08
7: PUSH1 0x04
9: ADD
10: JUMPI // orphan jump
11: INVALID
12: JUMPDEST
13: PUSH1 0x01
15: JUMPDEST

(a)

12
1
∅
∅
(b) (c) (d)

Figure 5: (a) Running example, (b) JUMPI’s input abstract stack, (c) starting CFG, (d)
final CFG.

Lines 4–19 inspect the analysis results of each jump node ℓ (JUMP and
JUMPI). Lines 11–16 inspect the element at the top of each abstract stack
incoming to the jump node ℓ. If it is a valid jump destination (lines 12–13,
where JDP ⊆ L are all labels ℓ of program P such that Π(ℓ) = JUMPDEST), an
edge is added from ℓ to v (the address of the jump destination) using function
buildEdge(ℓ, v), that returns a true edge between ℓ and v if Π(ℓ) = JUMPI,
or a normal edge between the two if Π(ℓ) = JUMP. In our running example, the
input abstract stack of the orphan JUMPI is the one depicted in Figure 5b, thus
line 13 adds the true edge from the JUMPI node to the node with program
counter equal to 12, i.e., the JUMPDEST node, as depicted in Figure 5d.

jumpSolver handles two more cases: when the input stack Ŝin is Sh

(lines 6–8), and when the top of the stack is a valid but unknown jump
destination (i.e., ⊤Z♯ but not ⊤Z, line 15). In both cases, an edge between the
jump and every possible jump destination is added only if the conservative
parameter is true: one might try tuning h and l to obtain soundness on a
specific program without defaulting to a conservative analysis that would add
spurious edges to achieve soundness, possibly degrading the results of the
analyses run on the generated CFG.

jumpSolver yields true if and only if at least one edge is added to the

20

Pseudocode 2 (Jump solver algorithm.)
1: function jumpSolver(GP = (N, E), h, l, conservative)
2: A ← runAnalysis(GP, h, l);
3: E ′ ← E;
4: for all (Ŝin, ℓ, Ŝout) ∈ A : Π(ℓ) ∈ {JUMP, JUMPI} do
5: if Ŝin = Sh then
6: if conservative then
7: E ← E ∪ {buildEdge(ℓ, ℓ′) | ℓ′ ∈ JDP};
8: end if
9: else

10: for all ŝ ∈ Ŝin do
11: v ← top(ŝ);
12: if v ∈ JDP then
13: E ← E ∪ {buildEdge(ℓ, v)};
14: else if v = ⊤Z♯ ∧ conservative then
15: E ← E ∪ {buildEdge(ℓ, ℓ′) | ℓ′ ∈ JDP};
16: end if
17: end for
18: end if
19: end for
20: return E ̸= E ′;
21: end function

CFG; the main procedure buildCFG keeps calling jumpSolver until no
edge is added to the final CFG (lines 3–5), after which it stops and returns the
CFG (line 6). In our running example, the final CFG is reported in Figure 5d.

If a program P contains n JUMP/JUMPI opcodes and m JUMPDEST opcodes,
then at most n×m edges can be added by procedure buildEdge (note that
procedure partialCFG already adds all false edges of JUMPI opcodes): this
yields a very conservative upper bound to the number of calls of procedure
JumpSolver. An in depth investigation over the worst-case complexity of
the analysis is beyond the scope of this paper. In practice, the number of
executions of JumpSolver in an analysis is expected to be much lower:
first of all, most jumps (e.g., all pushed jumps) resolve to a single JUMPDEST
opcode; it is also reasonable to assume that a large fraction of the jumps will
resolve to at most k JUMPDEST opcodes, where k is a small constant; also, a
single call to JumpSolver typically adds many edges at once.

21

4.3. Soundness of the generated CFG
The proof of soundness of buildCFG is given in Appendix A.4. Here, we

discuss soundness informally by classifying jump opcodes exploiting the results
of S l

h on the result of buildCFG. In the following, we assume that a jump is
reached with a possibly empty set of abstract stacks Ŝ = {ŝ0, . . . , ŝn−1}, n ∈ N.
We say that an abstract stack ŝi ∈ Ŝ is erroneous for jump opcode op if either
height(ŝi) = 0,6 or op = JUMPI and height(ŝi) = 1; that is, the stack describes
an already erroneous execution or it will immediately cause an error when
trying to execute the jump. We classify jump opcodes as:

• unreachable, if Ŝ = ∅, i.e., no stack reaches the jump node;

• erroneous, if all the stacks ŝi ∈ Ŝ are erroneous;

• resolved, if all non-erroneous ŝi ∈ Ŝ satisfy top(ŝi) ̸= ⊤Z♯ ; that is, all
the top values of Ŝ are integer values or ⊤Z;

• unknown, otherwise; that is, either Ŝ = Sh or there exists a non-
erroneous stack ŝi ∈ Ŝ such that top(ŝi) = ⊤Z♯ (i.e., the jump destina-
tion is an unknown numerical value).

Resolved jumps are thus guaranteed to have all of their outgoing edges
correctly added to the CFG, since the sound analysis determined precisely
the possible jump destinations they can target. Unknown jumps are instead
over-approximated with all possible destinations only if the conservative
analysis is enabled; otherwise, they are (i) unsoundly ignored if Ŝ = Sh, (ii)
unsoundly under-approximated with the definite jump destinations if at least
one reaching stack has ⊤Z♯ as its top element. Both unsound resolutions are
by-design: one can use such jumps as a hint that the parameters h or l are too
restrictive, and may try new combinations until these jumps become resolved.
Finally, unreachable jumps are deemed as not reachable by the analysis since
no stack (i.e., no execution) ever reaches the jump, and erroneous jumps
correspond to jumps that will never be executed by the EVM.

Whenever conservative = true, unreachable jumps are definitely unreach-
able: since they cannot be reached in a sound over-approximation of the
control flow of the program, no concrete execution can ever traverse such
jumps. Otherwise, unreachability might be due to the under-approximation

6Notice that this includes the case ŝi = ⊥Sh
.

22

of unknown jumps. Hence, jumps are truly unreachable only if no unknown
jump exists. The same holds for erroneous jumps. Soundness can thus be
stated as “either conservative = true, or no unknown jumps are found”.

5. Experimental Evaluation

The proposed algorithm buildCFG and the powerset of abstract stack
domain S l

h have been implemented in EVMLiSA, an Abstract Interpretation-
based static analyzer for EVM bytecode based on LiSA (Library for Static
Analysis) [44, 28, 43]. Both EVMLiSA and the dataset used for the experi-
mental evaluation are available at:

https://github.com/lisa-analyzer/evm-lisa.

For evaluating our approach, we used a dataset of existing smart con-
tracts (the same used in [7]) retrieved from the main public network of
Ethereum by querying the Etherscan APIs [25], obtaining a list of 5000 open-
source verified smart contracts published by Etherscan.7 From this list, we
extracted those with less than 3000 opcodes (to keep the experiment time rea-
sonable and allow for manual inspection) and with at least one JUMP or JUMPI
opcode, obtaining a final benchmark suite of 1697 distinct smart contracts.
All experiments in this section were ran on a Macbook Pro with Apple Silicon
M3 Pro CPU and 18GB of RAM. Overall, the suite contains ∼3M opcodes,
of which ∼240K correspond to jump opcodes. We ran EVMLiSA on such
benchmark with the powerset of abstract stacks domain from Definition 4,
using the non-conservative analysis (i.e., conservative = false) and varying
the parameters h and l to investigate their impact on the generated CFGs.
Specifically, we use values of h of 16, 32, 64, and 128, and values of l between
1 and 10. For each combination, Figure 6 reports the percentage of jumps
classified as resolved, the number of generated edges (including those having
the form ℓ→ next(ℓ)), and the average execution time (in milliseconds) for
the analysis of a single smart contract. The plots show that increasing h
beyond 32 does not lead to improvements in the analysis, nor it degrades
the analysis performances: this is likely due to the contained size of the

7Smart contracts were downloaded on June 11, 2024. The list of contract addresses
is publicly available at https://github.com/lisa-analyzer/evm-lisa/blob/master/
benchmark/5000-benchmark-2024-06-11.txt.

23

https://github.com/lisa-analyzer/evm-lisa
https://github.com/lisa-analyzer/evm-lisa/blob/master/benchmark/5000-benchmark-2024-06-11.txt
https://github.com/lisa-analyzer/evm-lisa/blob/master/benchmark/5000-benchmark-2024-06-11.txt

Figure 6: Impact of h and l on the number of resolved jumps, generated edges, and
execution time. h = 32 and h = 64 overlaps with h = 128 in the first two charts.

Table 1: Overall classification of jump opcodes (239895 in total).

Classification Conservative Non-Conservative
resolved % 90.53 92.89
unknown % 5.96 0.19
unreachable % 3.44 6.92
erroneous % 0.07 0.00
unsound CFGs 0 243
CFG edges 6116858 3122929
Average time ∼1.6s ∼1.1s

contracts, that limit the number of stack elements used by each opcode to a
small fraction of the available ones. Instead, increasing l generally leads to
a higher number of resolved jumps and generated edges, but also requires a
higher execution time. This is expected, as increasing l allows the analysis to
precisely track more abstract stacks generated in conditional branches and
loops before incurring in over-approximation, which in turn leads to a more
precise analysis. One may wonder about the local non-monotonicity in the
graph showing the percentage of resolved jumps as l increases. This behavior
arises because, as l increases, the analysis explores additional paths (as shown
by the graph of the generated edges), and some jumps that were previously
classified as resolved at lower values of l may become unknown. This is due to
the introduction of new paths and abstract stacks that propagate imprecise
information (i.e., ⊤Z♯), ultimately reducing the precision for those particular
jumps. However, despite these local fluctuations, the overall trend shows that
increasing l generally leads to a higher percentage of resolved jumps.

We now compare the performance of the best non-conservative analysis in

24

terms of resolved jumps (i.e., h = 32 and l = 10) with the conservative analysis
ran with the same parameters, to investigate the difference between the two
approaches. Table 1 shows the results obtained on the target benchmark,
produced by the Conservative analysis (i.e., when conservative = true),
and the Non-Conservative one, in terms of jump classifications. For each
analysis we report the percentage of jumps in each class (resolved, unknown,
unreachable, and erroneous), the total number of edges in the CFG produced
by our algorithm, the number of unsound CFGs produced, and the average
time in seconds for the analysis of a single smart contract. It is worth noting
that, out of 1697 smart contracts analyzed, only 243 of them got a possibly
unsound CFG (i.e., had at least one unknown jump) with the non-conservative
analysis. This hints that even with small values for h and l, our analysis is able
to produce sound CFGs with reasonable resource requirements. Furthermore,
there is also a visible decrease of resolved jumps, with an increase of unknown
ones. This can be imputed to the higher number of edges generated by the
conservative mode (almost twice as many): having more edges, more abstract
stacks are propagated in the CFG and eventually reach jump opcodes, causing
the threshold l to be exceeded more often. This also has the effect of reducing
the number of unreachable jumps. Nevertheless, in our opinion, such a small
decrease in resolution rate is a reasonable compromise for the soundness
guarantee. Another source of unknown jumps is the usage of ⊤Z♯ as jump
destination. As already discussed in [7], in our benchmark, ⊤Z♯ only appears in
abstract stacks as result of the SLOAD opcode, that depends from the dynamic
blockchain state and is thus inherently statically unknown. To address this
problem, we implemented an hybrid approach by integrating a runtime feature:
specifically, during the analysis phase, EVMLiSA performs an API request
to Etherscan8 to retrieve the current value stored in the blockchain storage.
This feature minimizes the ambiguity of the SLOAD opcode by resolving jumps
that are unknown due to this operator. While this approach can improve the
accuracy of the generated CFG (i.e., it reduces the number of spurious edges
generated), it is not fully static and it fails at generating a CFG that is valid
for all possible executions. We thus omit it from our evaluation.

5.1. Comparison on CFG reconstruction

8https://etherscan.io/

25

https://etherscan.io/

In this section, we compare EVMLiSA with state-of-the-art tools for
reconstructing CFGs from EVM bytecode. Specifically, we selected tools that
meet the following criteria: (i) they adopt a static analysis approach, (ii) they
operate on EVM bytecode, and (iii) they dump the reconstructed CFG as
output, in some format. Thus, we selected the following state-of-the-art tools
to be compared with EVMLiSA:

• EtherSolve [50]: a static analyzer based on symbolic execution that
reconstructs CFG from EVM bytecode;

• Gigahorse [29]: a decompiler from EVM bytecode into a high-level
three-address code representation;

• Vandal [10]: a static analysis framework for smart contracts decompiling
the EVM bytecode to an intermediate representation that includes the
code control flow;

• Mythril [12]: a security analysis tool for EVM bytecode based on
symbolic execution.

We run EVMLiSA with parameters h = 64 (maximum abstract stack
height), l = 20 (maximum abstract stack set size), but disabling the con-
servative option to ensure a fairer comparison: we recall that enabling the
conservative option ensures a sound construction of the CFG connecting
all unknown jumps to all JUMPDEST opcodes. We ran all tools on the same
benchmark set of 1697 smart contracts retrieved from Etherscan, discussed
in the previous section. A timeout of 5 minutes was set to limit the analysis
time for each contract. For each tool, we measured the number of contracts
for which it successfully produced a CFG without timing out or returning an
error, the average basic blocks and edges discovered by each tool, and average
execution time needed to complete the analysis (on the contract on which
the tool did not timed-out or raised execution errors).

Note that, since the tools output CFGs in different formats, we needed
to standardize them. For each tool, we converted its output into a common
representation, containing a list of basic blocks, each identified by the program
counter of the opcode that starts the block, and a list of edges between the
blocks. Additionally, we removed the last basic block of each EtherSolve’s
CFGs, since it is an instrumented block that is not part of the EVM bytecode
and that is connected to all other blocks.

26

Table 2: Quantitative comparison of CFG reconstruction tools over 1697 contracts from
Etherscan. Tools labeled with (∗) ignore opcodes.
Tool # Contracts Basic blocks (mean) Edges (mean) Time ms (mean)
EVMLiSA 1697 (100%) 145.97 193.79 2877.47
Vandal (∗) 1685 (99.29%) 160.76 190.98 2946.15
EtherSolve (∗) 1678 (98.88%) 60.19 68.37 223.96
Mythril 1406 (82.85%) 137.03 166.68 17395.41
Gigahorse 1393 (82.09%) 72.64 61.55 2270.51

Table 2 reports the comparison of CFG reconstruction tools on the bench-
mark suite. As shown in the second column of the table, EVMLiSA is the
only tool to obtain a 100% success rate, being able to successfully analyze and
compute a CFG for all the contracts contained in the benchmark. Slightly
lower success rates were observed for Vandal and EtherSolve, with 99.29%
and 98.88%, respectively. However, upon manual inspection, we found that
both EtherSolve and Vandal wrongly handle TLOAD and TSTORE opcodes, that
manipulate transient storage, and the PUSH0 opcode, introduced on April 12,
2023 in EIP-11539 and EIP-385510, respectively. Both Vandal and EtherSolve
silently skip such instructions, which causes the program counter tracking to
become inaccurate. We computed that 1391 contracts out of 1697 contain
occurrences of these opcodes: the CFGs these tools reconstruct may not
reflect the actual control flow, and their reported success rates should be
interpreted with caution. For instance, let us consider the contract at the
address 0x00000000006756ce25b95124e0FC879Cc2B7F1DA, that starts with
the following sequence of instructions (each opcode is preceded by the program
counter):

0: PUSH1 0x80
2: PUSH1 0x40
4: MSTORE
5: PUSH1 0x04
7: CALLDATASIZE
8: LT
9: PUSH2 0x327
12: JUMPI
13: PUSH0 // skipped by Vandal and EtherSolve
14: CALLDATALOAD
15: PUSH1 0xe0
17: SHR
18: DUP1
19: PUSH4 0 x54d1f13d
24: GT
25: PUSH2 179

9https://eips.ethereum.org/EIPS/eip-1153
10https://eips.ethereum.org/EIPS/eip-3855

27

https://eips.ethereum.org/EIPS/eip-1153
https://eips.ethereum.org/EIPS/eip-3855

Figure 7: Fragment of the CFG produced by Vandal for the contract at address
0x098008be8a62635979635babe85dafbae31f0f0a.

28: JUMPI

While EVMLiSA correctly adds the edge (12, 13) (corresponding the false
edge of the JUMPI node at program counter 12), both Vandal and EtherSolve
wrongly add the edge (12, 14), skipping the PUSH0 opcode. This leads to a
misidentification of basic blocks and edges. As a result, comparing EVMLiSA
with these tools was challenging, as their CFGs structurally differ due to
the missing instruction, given that these opcodes occurred frequently in the
benchmark suite.

The third and fourth columns of Table 2 report the average number
of basic blocks and edges identified by the tools, respectively. It is worth
noting that Vandal identified the highest number of basic blocks. As already
explained, these values should be interpreted with some care, as Vandal and
EtherSolve mishandle some opcodes. Compared to Mythril, EVMLiSA shows
a comparable average number of basic blocks and edges, while EtherSolve and
Gigahorse identify, on average, fewer basic blocks and edges than EVMLiSA.

Regarding execution time, EtherSolve is the fastest tool among those
evaluated, while Mythril is the slowest. Nevertheless, EVMLiSA maintains
competitive execution times, even when compared to Vandal and Gigahorse.

On the same benchmark suite, Table 3 reports a qualitative evaluation
where each tool is compared against EVMLiSA in terms of edge coverage.
For each tool, we report the total number of generated CFGs, and then we
split them in two groups. The Comparable group contains CFGs whose
edge set can be compared with the one generated by EVMLiSA for the same
contract, that we refer to as the baseline. By comparable we mean that the

28

Table 3: Comparison of CFG reconstruction tools over 1697 contracts from Etherscan,
using the edges of the CFGs generated by EVMLiSA as baseline. Tools labeled with (∗)
ignore opcodes. For each tool, we report the CFGs successfully generated (Total), and we
partition them depending on whether their edge set can be compared (Comparable) or
not (Incomparable) with the baseline in terms of set inclusion. For comparable ones, we
report: CFGs with the same edges as the baseline (=), CFGs with a strict subset of the
baseline (⊂), and CFGs with a strict superset of the baseline (⊃). For incomparable ones,
we report: CFGs with less edges than the baseline (<), CFGs with more edges than the
baseline (>), and CFGs with the same number of edges as the baseline (=).

Tool Total Comparable Incomparable
= ⊂ ⊃ Total < > = Total

Mythril 1406 19 97 0 116 1134 153 3 1290
Gigahorse 1393 7 163 0 170 1223 0 0 1223
Vandal (∗) 1685 45 8 48 101 1158 425 1 1584
EtherSolve (∗) 1678 26 43 20 89 1400 188 1 1589

two edge sets are either equal (column ‘=’), or one of them strictly contains
the other (columns ‘⊂’ and ‘⊃’, where column ‘⊂’ contains the number of
CFGs for which the considered tool computes a strict subset of the edges
computed by the baseline). The Incomparable group instead contains CFGs
for which no inclusion relation holds. For these, we resort to the comparison
of the number of generated edges: column ‘<’ contains the number of CFGs
having less edges than those computed by the baseline, column ‘>’ contains
the number of CFGs having more edges than those computed by the baseline,
and column ‘=’ contains the number of CFGs that, while being different, still
contain the same number of edges than the baseline.

Notably, Mythril and Gigahorse never generate CFGs that fully contain
EVMLiSA’s ones, while the converse is true in 97 and 163 smart contracts,
respectively. Instead, EtherSolve’s and Vandal’s CFGs fully include all of
EVMLiSA’s CFG edges in 20 and 48 smart contracts, respectively, whereas
the converse is true in 43 and 8 smart contracts, respectively. However, as
previously discussed, Vandal and EtherSolve skip the more recent opcodes
(e.g., PUSH0): some inclusion relations might be missed due to the incorrect
edges generated by such tools. Manual inspection also confirmed what was
already guessed in [50]: when Vandal cannot resolve the destination of a jump,
it over-approximates it assuming all basic blocks as possible destinations (in
manner similar to our conservative approach). For instance, let us consider
the contract with address 0x098008be8a62635979635babe85dafbae31f0f0a.

29

Fig. 7 reports a fragment of the CFG reconstructed by Vandal. The red
nodes are basic blocks corresponding to the end blocks of functions, and
when Vandal cannot precisely infer a jump destination, as it happens in the
nodes at the top of the figure, it connects them to all possible exit points.
Since the conservative mode of EVMLiSA is disabled in this experiment,
Vandal’s over-approximation explains why few of EVMLiSA’s CFGs include
ones generated by Vandal.

In the Incomparable group, EVMLiSA generates more edges on signifi-
cantly more smart contracts compared to all the other tools. Nevertheless,
Vandal is the one that most frequently produces additional edges not present
in EVMLiSA’s output (425 contracts in total). Again, this is due to Vandal’s
over-approximation strategy, which is applied when it cannot resolve a jump
destination, as previously discussed.

5.2. Reentrancy vulnerabilities detection
To investigate the benefits of sound CFGs, we implemented a checker

in EVMLiSA that detects one of the most well-known and critical issues
for the Ethereum blockchain, i.e., the reentrancy vulnerability [9, 56], which
allowed over $50 million to be hacked in 2016 [51]. EVMLiSA adopts a
similar approach to the one used by EtherSolve, leveraging the previously
built CFG to detect reentrancy vulnerabilities. The checker traverses the
CFG produced by EVMLiSA to identify specific execution paths that might
lead to reentrancy attacks. First, we identify the CALL opcodes, which execute
external calls. For each of these nodes, the checker examines the set of
abstract stacks reaching the node, checking the address used by the CALL
opcode for the external call, i.e., the second top-most element of each abstract
stack. If the address is unknown, the node is flagged as potentially unsafe.
Next, the checker determines whether an SSTORE opcode (i.e., an opcode that
modifies contract’s state) is reachable from an unsafe CALL opcode. If a path
exists between a CALL and a SSTORE opcode, the checker reports a potential
reentrancy vulnerability.

In the following subsections, we will compare EVMLiSA with Ether-
Solve [50], Mythril [12], and Vandal [10], assessing the precision of EVMLiSA
in detecting reentrancy vulnerabilities in EVM bytecode smart contracts. We
decided to compare EVMLiSA with tool working at the EVM bytecode level,
excluding the ones operating at source level (e.g., Solidity or Vyper), such as
Slither [27] or SmartCheck [61]. EtherSolve has already conducted a compre-
hensive evaluation of these tools in the context of reentrancy vulnerability

30

detection in [50], making a redundant comparison unnecessary. Additionally,
the authors of [50] show that EtherSolve outperforms the aforementioned tools,
with the exception of Slither. Their evaluation used the SolidiFI dataset,
which consists of 50 Ethereum smart contracts written in Solidity whose
source code had been injected with reentrancy vulnerabilities.

In Sections 5.2.1 and 5.2.2 we consider two datasets (SolidiFI, already
used in [50], and SmartBugs) and we measure the following performance
metrics of the selected tools in detecting reentrancy vulnerabilities on these
datasets (TP , FP , FN denote true positives, false positives, and false negatives,
respectively):

Precision : P = |TP |
|TP |+ |FP |

Recall : R = |TP |
|TP |+ |FN |

F-measure : F1 = 2 · P ·R
P + R

5.2.1. SolidiFI
The SolidiFI dataset11 includes 50 Solidity files containing several smart

contract implementations intentionally injected with reentrancy vulnerabili-
ties. When evaluating EVMLiSA on this dataset we first observed that some
of the vulnerabilities, injected in the Solidity source code, were disappearing
in the corresponding compiled EVM bytecode. We manually inspected each
EVM bytecode contract compiled from the corresponding Solidity source code
and discovered that the vulnerabilities injected in contract interfaces whose
methods were not invoked elsewhere in the source code disappeared in the
corresponding compiled EVM bytecode. Let us consider the Solidity code
fragment reported in Figure 8a, corresponding to a fragment of the file no. 12
(i.e., buggy_12.sol) of the SolidiFI dataset. The source code includes some
contracts, and interfaces definitions that correspond to the ERC-20 and ERC-
223 standards. These interfaces define the functions withdrawFunds_re_ent31
and withdrawFunds_re_ent3, respectively. As noted by the authors of the

11Available at: https://github.com/DependableSystemsLab/SolidiFI-benchmark.

31

https://github.com/DependableSystemsLab/SolidiFI-benchmark

SolidiFI dataset, these functions are expected to be vulnerable to reentrancy at-
tacks due to the use of msg.sender.send(_weiToWithdraw) (line 8, Figure 8a)
and msg.sender.call.value(_weiToWithdraw)("") (line 19, Figure 8a), re-
spectively. However, while both functions appear susceptible to reentrancy
vulnerabilities, a closer inspection of the compiled bytecode reveals that only
one of them actually results in a vulnerability at the EVM level. As shown
in Figure 8b, after compilation, the interface contracts do not contain any
executable EVM bytecode (i.e., both the "bin" and "bin-runtime" fields are
empty at lines 9–10 and 17–18 of Figure 8b) though their methods remain
visible in the ABI [60] (e.g., "abi" fields at lines 6–8 and 14–16 of Figure 8b).
This behavior is expected, since in Solidity interfaces are abstract and do
not generate executable bytecode unless inherited by a concrete contract.
For example, the ERC223Token contract inherits from the ERC223 interface
(line 26, Figure 8a) and, as a result, the function withdrawFunds_re_ent3
appears in the ABI of ERC223Token (lines 15 and 24, Figure 8b). Additionally,
ERC223Token does produce EVM bytecode, meaning that the "bin" and "bin-
runtime" fields are populated (lines 26–27, Figure 8b). This means that the
reentrancy vulnerability in withdrawFunds_re_ent3 is effectively exploitable
at runtime. In contrast, the ERC20 interface is not inherited by any contract
within the file number 12. As a result, no concrete contract implements the
withdrawFunds_re_ent31 function, and thus no EVM bytecode is generated
for it. Despite its presence in the ABI, the function cannot be invoked on-
chain, and the potential vulnerability it represents cannot be exploited in
practice.

Thus, for this experiment, we refined the Solidity source code by excluding
vulnerabilities confined to interfaces that are not reflected in the compiled
bytecode, and recompiled all the programs to ensure consistency in the
analysis.12

We then followed the same experimental setup adopted in [50] for So-
lidiFI (i.e., analyzing only the longest bytecode produced by the compiler),
ensuring consistency and comparability in the benchmarking process. We run
EVMLiSA, with parameters h = 40, l = 10, and conservative = false.

Table 4 reports the comparison among the selected tools on the SolidiFI

12For each file, the number of removed vulnerabilities w.r.t. the original ground truth
provided by SolidiFI (reported as <sequential id of contract>:<number of vulnerabilities>)
are: 11:1, 12:9, 18:1, 20:2, 21:4, 22:7, 29:3, 33:3, 36:7, 37:1, 42:3, 48:1.

32

1 pragma solidity >=0.4.23 <0.6.0;
2 // ...
3 contract ERC20 {
4 // ...
5 function withdrawFunds_re_ent31 (uint256 _weiToWithdraw) public {
6 require (balances_re_ent31 [msg. sender] >= _weiToWithdraw);
7 // limit the withdrawal
8 require (msg. sender .send(_weiToWithdraw)); // bug
9 balances_re_ent31 [msg. sender] -= _weiToWithdraw ;

10 }
11 // ...
12 }
13 // ...
14 contract ERC223 {
15 // ...
16 function withdrawFunds_re_ent3 (uint256 _weiToWithdraw) public {
17 require (balances_re_ent3 [msg. sender] >= _weiToWithdraw);
18 // limit the withdrawal
19 (bool success ,)= msg. sender .call. value (_weiToWithdraw)("");
20 require (success); // bug
21 balances_re_ent3 [msg. sender] -= _weiToWithdraw ;
22 }
23 // ...
24 }
25 // ...
26 contract ERC223Token is ERC223 {
27 // ...
28 }
29 // ...

(a) Solidity code snippet

1 {
2 " contracts ":
3 {
4 "./ solidifi / reentrancy /source -code/ buggy_12 .sol: ERC20 ":
5 {
6 "abi": "[{ ...
7 "name" : " withdrawFunds_re_ent31 ",
8 ...]",
9 "bin": "",

10 "bin - runtime ": ""
11 },
12 "./ solidifi / reentrancy /source -code/ buggy_12 .sol: ERC223 ":
13 {
14 "abi": "[{ ...
15 "name" : " withdrawFunds_re_ent3 ",
16 ...]",
17 "bin": "",
18 "bin - runtime ": ""
19 },
20 ...
21 "./ solidifi / reentrancy /source -code/ buggy_12 .sol: ERC223Token ":
22 {
23 "abi": "[{ ...
24 "name" : " withdrawFunds_re_ent3 ",
25 , ...]",
26 "bin": " 6080... c0032 ",
27 "bin - runtime ": " 6080... c0032 "
28 },
29 ...
30 },
31 " version ": " 0.5.12+ commit .7709 ece9. Darwin . appleclang "
32 }

(b) Compilation output

Figure 8: buggy_12.sol from SolidiFI
33

Table 4: Tool comparison on the SolidiFI dataset.

Tool Precision (%) Recall (%) F-measure (%)
EVMLiSA 100.00 100.00 100.00
EtherSolve 100.00 100.00 100.00
Vandal 100.00 28.36 44.19
Mythril 100.00 16.45 28.25

dataset. Both EVMLiSA and EtherSolve achieve best results on the SolidiFI
dataset. In contrast, Vandal and Mythril only detect true positives, but fail to
identify several vulnerabilities, leading to a lower recall, as shown in the third
column of Table 4. A graphical breakdown of tool performance per smart
contract is shown in Figure 9. Overall, EVMLiSA confirms its effectiveness
and precision in reentrancy detection, showing results aligned with those of
EtherSolve.

5.2.2. SmartBugs
For the second experiment, we used the SmartBugs dataset,13 which

consists of 31 Solidity files with contracts affected by reentrancy vulnerabilities.
As with the SolidiFI dataset, we compiled the Solidity source code into EVM
bytecode. We were forced to exclude the last smart contract of the dataset,
because we obtained a compilation error both when compiling it locally using
solc and when compiling it online using Remix;14 thus, we were left with a
final dataset of 30 smart contracts.

We ran EVMLiSA on this slightly reduced dataset, using the power-
set of abstract stacks domain with the parameters h = 40, l = 10, and
conservative = false. Table 5 reports the comparison among the selected
tools on the SmartBugs dataset. EVMLiSA achieves the highest overall
performance, with a Precision of 93.75% and perfect Recall, confirming the
effectiveness of EVMLiSA in detecting true reentrancy vulnerabilities while
producing very few false positives. While EtherSolve achieves a good precision,
it suffers from false negatives, resulting in a much lower recall. Vandal attains
perfect Recall, successfully identifying all reentrancy vulnerabilities in the
dataset, but exhibits significantly lower Precision (41.67%) as it raises several
false positives across most smart contracts. On the other hand, Mythril

13Available at: https://github.com/smartbugs/smartbugs-curated.
14https://remix.ethereum.org/

34

https://github.com/smartbugs/smartbugs-curated
https://remix.ethereum.org/

(a) Smart contracts 1–25

(b) Smart contracts 26–50

Figure 9: Reentrancy analysis results on the SolidiFI dataset. Bars show the number
of reentrancy vulnerabilities on each smart contract as reported by EVMLiSA (orange),
EtherSolve (green), Vandal (red), and Mythril (purple), with the correct number of
vulnerabilities in blue.

shows both a high false positive rate and some false negatives, resulting in
the lowest value for F-measure. Figure 10 reports a graphical representation
of the experiment of the SmartBugs dataset, where it is possible to note that
EVMLiSA reports false positives for only two smart contracts (11 and 21).
Overall, EVMLiSA stands out as the only tool that achieves both soundness
and high precision in reentrancy vulnerability detection.

6. Related Work

The Ethereum protocol and EVM have been adopted for the creation of
several mainstream blockchain solutions. Indeed, it is not limited to the main
network of Ethereum but is also adopted by several other blockchain networks

35

Table 5: Tool comparison on the SmartBugs dataset.

Tool Precision (%) Recall (%) F-measure (%)
EVMLiSA 93.75 100.00 96.77
EtherSolve 85.71 60.00 70.59
Vandal 41.67 100.00 58.82
Mythril 21.01 96.67 34.52

such as Ethereum, Tron, Polygon, Arbitrium, and Avalanche. Furthermore,
Ethereum’s popularity continues to grow, dominating the decentralized finance
(DeFi) with the majority of the Total Value Locked (TVL) among all currently
existing blockchains [20]. The abundance of smart contract verification tools
and frameworks on Ethereum is driven by its widespread adoption and the
critical need for security [9], as these blockchain solutions host a large variety
of dApps and financial assets, necessitating reliable methods to audit, test,
and ensure the integrity of smart contracts. Static techniques detect issues
and software properties without code execution [55]. Advanced verification
tools, such as [39, 10, 27, 2, 4, 58, 61, 50] and EVMLiSA, are required for
in-depth code analysis and to ensure the detection of non-trivial security
issues, bugs, and vulnerabilities. These tools can be applied as automated
processes that run periodically in the development pipelines (e.g., at every
commit, tag, or before a code release) and provide a comprehensive analysis
of code behaviors by accurately considering the semantics of instructions
and providing more precise and detailed analysis results. However, their
adoption may require non-trivial hardware requirements and their usage may
imply heavy computations, with execution time ranging from several seconds
to hours. Quite often, the effectiveness of these tools strongly depends on
the availability of a precise CFG representation, that accurately models the
possible execution paths of a program.

6.1. CFG Reconstruction
Reconstructing a CFG in Ethereum-based smart contracts is typically

approached in two main ways: some tools directly operate on the high-level
source code, while others analyze the compiled EVM bytecode; note that
some tool may apparently accept high-level source code, just to implicitly
compile it to EVM bytecode prior to analysis.

A notable tool that operates at the source-level is Slither [27], which
constructs an intermediate representation (IR) based on CFGs and a static

36

(a) Smart contracts 1–15

(b) Smart contracts 16–30

Figure 10: Reentrancy analysis results on the SmartBugs dataset. Bars show the number
of reentrancy vulnerabilities on each smart contract as reported by EVMLiSA (orange),
EtherSolve (green), Vandal (red), and Mythril (purple), with the correct number of
vulnerabilities in blue.

single assignment (SSA) form, preserving semantic information from Solidity
and Vyper. It then applies data-flow and taint analyses to detect issues and
vulnerabilities. However, Slither does not compute a fully sound CFG in
the formal sense, as the reconstruction omits complex flows such as those
involving dynamic dispatch and inline assembly, that would require analysis
at the bytecode level. In general, tools that analyze high-level languages,
such as Solidity and Vyper, do not handle orphan or dynamic jumps, as such
constructs are absent in the high-level syntax. Indeed, they work on explicit
control structures (e.g., if, for, while), thereby avoiding the complexities of
resolving low-level, indirect control flows introduced during compilation. As

37

a consequence, these tools are unable to detect potential vulnerabilities that
could have been introduced due to a bug in the compilation process. The
applicability of these tools is also limited in practice, since deployed smart
contracts typically expose only their bytecode, and the corresponding source
code is often unavailable or unverifiable.

Several tools working on EVM bytecode rely on CFGs derived from it, but
the CFG reconstruction is often not their main focus. For instance, Albert et
al. [4] considers CFGs as a symbolic denotation of transition systems, with
the goal of ensuring modularity of programming languages and detecting
reentrancy issues. Since the main focus is not on CFG reconstruction, they
provide little information on it. Only a small fraction of the literature provides
details on the techniques used for CFG reconstruction and the soundness
guarantees they provide [59], which in most cases involve symbolic execution
techniques, possibly combined with SMT solvers, to explore execution paths
and resolve control flow. One of the main limitations of symbolic execution
is that not all execution paths are taken into account during the analysis,
thus failing to achieve soundness. SMT solvers may also require considerable
time to execute, with no termination guarantees. In contrast, Abstract
Interpretation trades precision for efficiency: by approximating program
behavior, it guarantees that the analysis terminates with sound results, even
if this means losing accuracy in the interpretation of program semantics.

A milestone for the smart contract verification based on symbolic execution
is certainly Oyente [39, 21]. It computes edges that cannot be statically
determined on the fly during a symbolic execution, exploiting the Z3 solver [19]
to eliminate provably infeasible traces from consideration. However, Oyente’s
CFG reconstruction does not support dynamic jumps [3], and it sometimes
fails to terminate within time limits [39], making the tool unsound and
susceptible to termination issues.

Other noteworthy tools emerged following Oyente’s success. Vandal [10]
combines decompilation, jump discovery, node-splitting, and incremental
dataflow analysis for CFG reconstruction. The decompilation process consists
of two phases. First, a symbolic execution translates stack operations into
a registry-based IR, and identifies basic blocks and their data dependencies.
Then, a data flow analysis computes and propagates constant values that may
carry jump addresses until either a fixed-point is reached, or the time/iteration
limit is reached. Node splitting is applied to resolve as many jump destinations
as possible: a basic block with two different jump destinations gets duplicates.
This results in CFG where each path in the original code is a separate

38

branch, each starting from a shared root node. Once the dataflow analysis
is complete, any duplicated nodes are merged back together, ensuring the
final output matches the original program. Several other notable tools have
fully or partially relied on Vandal’s components such as MadMax [30] and
Gigahorse [29].

Gigahorse [29] decompiles EVM bytecode into a high-level three-address
code representation to make data- and control-flow dependencies explicit,
applying symbolic execution to compute dynamic jumps’ destinations. Elip-
moc [31] (aka Gigahorse 2.0, as stated by its authors) is a more recent
evolution of Gigahorse. While they share a similar architecture, their algo-
rithms differ, leading to variations in precision, completeness, and scalability.
Differences include an improved inference of high-level calls (e.g., Gigahorse
fails to recognize some private calls) and a significantly less noisy function
argument inference. At a high-level, the argument inference algorithms in
Elipmoc and Gigahorse are similar. However, Gigahorse employs a polynomial
(non-path-sensitive) algorithm, while Elipmoc maintains paths separately, re-
sulting in a worst-case exponential algorithm. To control complexity, Elipmoc
employs several approximations, such as treating paths as sets (rather than
sequences) and truncating them at key points. To the best of our knowledge,
Vandal, Gigahorse, and Elipmoc are not provably sound.

EthIR [3] constructs CFGs for EVM bytecode and generates a rule-based
representation of the program, where code parsing and graph structure are
based on Oyente. The authors report that they enhanced Oyente’s graph
reconstruction to support more jump addresses, providing a sound approach.
Specifically, a context-sensitive static analysis is applied to compute a stack-
sensitive control flow graph. It analyzes each block separately for every
possible stack that can reach jump operations, cloning blocks that might be
executed with different execution states [1]. The EVM stack is represented as
explicit variables during the analysis. EthIR is however limited to programs
without recursions, as only in such cases can the stack be effectively flattened.
Hence, the tool might fail to generate a CFG [2] primarily due to recursion
and higher-order programming constructs. Nevertheless, when the CFG is
successfully generated, it has been formally proven to be sound [1].

eThor [58] performs an analysis using HoRSt specifications, defining a
state for each program point. This approach allows it to infer potential jump
destinations for each block. Once the control flow of a contract is built, rules
are encoded and fed to Z3 to determine if the contract is vulnerable. eThor
comes with a rigorous soundness proof but only supports the verification of

39

reachability properties realized by Horn clause resolution. The reconstructed
control flow is obtained by a Soufflé [34] program, which was created by
manually translating a HoRSt specification. The challenge of sound recon-
struction is addressed by basing the corresponding pre-analysis on a proper
relaxation of the provably sound abstract semantics in the Soufflé format, en-
suring that the original soundness guarantees are inherited. A complementary
tool of eThor is HoRStify [32], which provides an automatic way to perform
sound security analysis, allowing the verification of a special class of 2-safety
properties (including trace non-interference). However, regarding the CFG
reconstruction, the sound computation of jump destinations has been left as
orthogonal/future work.

Finally, EtherSolve [50] can be considered a state-of-the-art tool for CFG
reconstruction, empirically demonstrating a high degree of precision. Specifi-
cally, EtherSolve achieves a success rate of 99.7% for the CFG reconstruction
on a dataset of real-world smart contracts, outperforming Vandal (97.8%),
Gigahorse (95.1%), and EthIR (21.2%). EtherSolve’s algorithm executes the
stack symbolically, walking through the CFG using a DFS keeping a snapshot
of the stack state for each basic block. Only the opcodes in the PUSH, DUP and
SWAP families are considered, along with AND and POP. For every other opcode
the symbolic stack pops and pushes unknown elements, as they do not deal
with the jump addresses. Furthermore, it applies the following constraints to
avoid infinite computations: (i) an edge cannot be analyzed more than once
with the same symbolic stack state, and (2) there is a limit on the number of
elements to compare when checking for stack equivalence. Additionally, when
the DFS encounters a block ending with a jump, only its destination block
(obtained from the symbolic stack) is added to the queue, avoiding infeasible
paths. During CFG computation, decorators are also applied to provide
additional information (e.g., the dispatcher, the fallback function, and the
last basic block of the contract) which can be useful for other purposes, such
as vulnerability detection, debugging, or human code assessments. In essence,
the approach followed by EtherSolve tends to make under-approximations, as
it considers only certain execution flows while ignoring others that are also
feasible. As noted by the authors, EtherSolve does not guarantee sound CFG
reconstructions.

Compared to these tools, EVMLiSA computes an over-approximation
of the invariants at each opcode, considering the semantics of all opcodes
present in the analyzed EVM bytecode during the jump computation and
resolution. Being based on Abstract Interpretation, EVMLiSA applies over-

40

approximations to consider all possible execution paths, also in case of orphan
jumps or recursions, and is thus inherently sound. Moreover, even when the
soundness guarantees are turned off (i.e., when conservative is set to false),
EVMLiSA is shown to be on par with EtherSolve, outperforming the other
tools.

6.2. Other Verification Techniques, Tools, and Directions
Building on the previous discussion of static analysis and CFG reconstruc-

tion, this section expands the review of related work by exploring additional
methodologies, tools, and emerging research directions.

6.2.1. Dynamic Analysis
Dynamic analysis detects issues during and after code execution by ap-

plying checks in controlled environments or, in some cases, directly within
the live environment. A typical example is unit testing, where small parts of
the smart contract code are executed to verify that individual functions work
correctly with respect to expected results. Frameworks such as Truffle [13]
and Hardhat [45] offer tools specifically designed for writing, running, and
checking unit tests for Ethereum smart contracts. However, testing presents
unique challenges in the blockchain context and, moreover, can only reveal
the presence of bugs, not their absence, since it observes only a finite set of
finite executions [49].

Another popular testing technique is dynamic fuzzing. Tools based on this
approach inject random, unexpected, or malformed input (commonly referred
to as fuzz or fuzzed inputs) into a running smart contract. The contract’s
behavior is then observed under these varying inputs to identify potential
vulnerabilities, bugs, or unexpected outcomes. In practice, fuzzing tools are
favored by attackers [40], as they are more effective for discovering exploits
than for ensuring comprehensive protection. Some notable examples of dy-
namic fuzzing tools for Ethereum smart contracts include ContractFuzzer [33]
and ReGuard [36].

Monitoring tools also fall under the category of dynamic analysis. However,
they typically work at the data layer, focusing on analyzing transaction data
and logs rather than the code being executed. As a result, if unexpected
values or behaviors are detected, these tools offer limited insight into the root
cause within the smart contract’s code. Furthermore, monitoring is generally
applied in the final stages of development or post-deployment, phases in which
fixing bugs may not be feasible due to code immutability.

41

Other dynamic solutions involve dynamic symbolic execution (e.g., Man-
ticore [42]), dynamic analyses combined with machine learning (e.g., [22]),
and also mixed approaches between dynamic and static techniques (e.g.,
SmartScan [57], SMARTIAN [11], Mythril [12]).

6.2.2. Mixed Static Analysis and AI Approaches
Static analysis can also be leveraged in the verification of smart contracts

through artificial intelligence (AI) [53, 52]. Many state-of-the-art verification
tools based on machine learning techniques require transforming smart con-
tract code into graph-based representations (e.g., CFGs) to be fed to neural
networks or to be combined with graph neural network models. Furthermore,
verification tools based on static analysis are often employed to generate la-
beled datasets, which are then used to train deep learning models. Compared
to traditional static verification tools, AI-based approaches offer advantages
in terms of scalability and adaptability. However, they rely on probabilistic
models rather than rigorous formal techniques, and therefore do not provide
sound guarantees about their results. Notable examples of AI-based tools
include CGE [37], Eth2Vec [8] and ContractWard [64].

6.2.3. Static analysis and Blockchain Interoperability
Recent studies have also applied existing static analyses to deal with

blockchain interoperability issues. In particular, they focus on analyzing
bridge smart contracts to detect cross-chain inconsistent behaviors, primarily
within homogeneous interoperable solutions, e.g., between different Ethereum-
based blockchains. For instance, XGuard [63] extracts and analyzes semantic
information and the source/destination blockchains involved in bridging
operations from Solidity smart contracts. It builds upon the static analysis
tool Slither [27], extending it with custom verification modules specifically
designed for detecting interoperability issues. In contrast, SmartAxe [35]
targets EVM bytecode directly to identify vulnerabilities in cross-chain bridge
contracts. It employs both data-flow and control-flow analyses to detect
issues such as access control incompleteness and semantic inconsistencies.
However, these tools do not offer formal guarantees about their findings, and
they suffer from both false positives and false negatives. Moreover, current
solutions remain limited to homogeneous settings, leaving heterogeneous
interoperability and other forms of cross-chain interactions as open challenges
for future research [47].

42

7. Conclusion

In this paper, we presented a new approach aimed at building sound
CFGs from EVM bytecode smart contracts, applying static analysis tech-
niques within the Abstract Interpretation framework. In particular, for each
instruction of a smart contract, we compute the approximation of possible
stack values involving a parametric abstract domain. Then, we targeted
the jump instructions and used the computed stack information to resolve
possible jump destinations and build CFG edges thus over-approximating the
execution paths of a smart contract. Finally, we implemented our approach
in EVMLiSA and evaluated it by reconstructing CFGs for existing smart
contracts and detecting reentrancy vulnerabilities in well-known benchmark
suites of real-world smart contracts, comparing our results with those of
state-of-the-art static analyzers.

In future work, we will investigate how to build sound CFGs in the cross-
contract and cross-chain contexts, where for instance parametric calls [18] (e.g.,
CALL , STATICCALL, and DELEGATECALL opcodes) and events [24] require an
approximation of their possible values to compute the targets of cross-contract
and cross-chain invocations [26], respectively. Furthermore, EVMLiSA can
potentially be extended to support analysis across homogeneous blockchains
based on EVM smart contracts or combined with other LiSA front-ends [44]
to achieve an analysis across heterogeneous blockchains (e.g., Hyperledger
Fabric [48], Cosmos [48], and Tezos [46]) with smart contracts written in
different programming languages. We also plan to implement new checkers
for EVMLiSA to soundly detect other critical and well-known vulnerabilities,
such as timestamp and randomness dependency [9].

8. Data Availability

The source code of EVMLiSA is publicly available at its official GitHub
repository: https://github.com/lisa-analyzer/evm-lisa. The materials
required to replicate the experimental evaluation presented in this paper
are available on Zenodo at https://zenodo.org/records/15516665 (DOI:
10.5281/zenodo.15516664).

Acknowledgments.
Work partially supported by Bando di Ateneo per la Ricerca 2022,

funded by University of Parma, (MUR_DM737_2022_FIL_PROGETTI_B
_ARCERI_COFIN, CUP: D91B21005370003).

43

https://github.com/lisa-analyzer/evm-lisa
https://zenodo.org/records/15516665

Luca Negrini, Luca Olivieri: Work partially supported by SERICS (PE000-
00014 - CUP H73C2200089001) and iNEST (ECS00000043 – CUP H43C220005-
40006) projects funded by PNRR NextGeneration EU

References

[1] Elvira Albert, Jesús Correas, Pablo Gordillo, Alejandro Hernández-
Cerezo Guillermo Román-Díez, and Albert Rubio. Analyzing smart
contracts: from evm to a sound control-flow graph. arXiv preprint
arXiv:2004.14437, 2020. https://doi.org/10.48550/arXiv:2004.
14437.

[2] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez,
and Albert Rubio. Don’t run on fumes—parametric gas bounds for smart
contracts. Journal of Systems and Software, 176:110923, 2021.

[3] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya
Sergey. Ethir: A framework for high-level analysis of ethereum bytecode.
In Shuvendu K. Lahiri and Chao Wang, editors, Automated Technology
for Verification and Analysis - 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume
11138 of Lecture Notes in Computer Science, pages 513–520. Springer,
2018. https://doi.org/10.1007/978-3-030-01090-4_30.

[4] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez,
Albert Rubio, and Mooly Sagiv. Taming callbacks for smart contract
modularity. Proc. ACM Program. Lang., 4(OOPSLA), November 2020.
https://doi.org/10.1145/3428277.

[5] Frances E. Allen. Control flow analysis. In Proceedings of a Symposium
on Compiler Optimization, page 1–19, New York, NY, USA, 1970. Asso-
ciation for Computing Machinery. https://doi.org/10.1145/800028.
808479.

[6] A. M. Antonopoulos and G. Wood. Mastering Ethereum: Building Smart
Contracts and Dapps. O’Reilly, Sebastopol, CA, USA, 2018.

[7] Vincenzo Arceri, Saverio Mattia Merenda, Greta Dolcetti, Luca Negrini,
Luca Olivieri, and Enea Zaffanella. Towards a sound construction of
evm bytecode control-flow graphs. In Proceedings of the 26th ACM

44

https://doi.org/10.48550/arXiv:2004.14437
https://doi.org/10.48550/arXiv:2004.14437
https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1145/3428277
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479

International Workshop on Formal Techniques for Java-like Programs,
FTfJP 2024, page 11–16, New York, NY, USA, 2024. Association for
Computing Machinery. https://doi.org/10.1145/3678721.3686227.

[8] Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura.
Eth2vec: Learning contract-wide code representations for vulnerability
detection on ethereum smart contracts. Blockchain: Research and Appli-
cations, 3(4):100101, 2022. https://doi.org/10.1016/j.bcra.2022.
100101.

[9] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts (sok). In Matteo Maffei and Mark
Ryan, editors, Principles of Security and Trust, pages 164–186, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg.

[10] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts. CoRR, abs/1809.03981,
2018. http://arxiv.org/abs/1809.03981.

[11] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce,
and Sang Kil Cha. Smartian: Enhancing smart contract fuzzing with
static and dynamic data-flow analyses. In 2021 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages
227–239, 2021. https://doi.org/10.1109/ASE51524.2021.9678888.

[12] Consensys. Mythril. https://github.com/ConsenSys/mythril Ac-
cessed: 08-02-2023.

[13] ConsenSys Software Inc. Truffle Official Website. https://archive.
trufflesuite.com/ Accessed: 04-11-2024.

[14] Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.

[15] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL
’77, page 238–252, New York, NY, USA, 1977. Association for Computing
Machinery. https://doi.org/10.1145/512950.512973.

45

https://doi.org/10.1145/3678721.3686227
https://doi.org/10.1016/j.bcra.2022.100101
https://doi.org/10.1016/j.bcra.2022.100101
http://arxiv.org/abs/1809.03981
https://doi.org/10.1109/ASE51524.2021.9678888
https://github.com/ConsenSys/mythril
https://archive.trufflesuite.com/
https://archive.trufflesuite.com/
https://doi.org/10.1145/512950.512973

[16] Patrick Cousot and Radhia Cousot. Constructive versions of tarski’s
fixed point theorems. Pacific journal of Mathematics, 82(1):43–57, 1979.

[17] Patrick Cousot and Radhia Cousot. Abstract interpretation and applica-
tion to logic programs. The Journal of Logic Programming, 13(2):103–179,
1992. https://doi.org/10.1016/0743-1066(92)90030-7.

[18] Cyfrin. Calling other contract. https://solidity-by-example.org/
calling-contract/ Accessed: 12-02-2024.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[20] DefiLlama. Total value locked all chains, 2024. https://defillama.
com/chains Accessed 10/2024.

[21] Enzyme Finance. Oyente: An Analysis Tool for Smart Contracts, 2028.
https://github.com/melonproject/oyente Accessed: 12-05-2025.

[22] Mojtaba Eshghie, Cyrille Artho, and Dilian Gurov. Dynamic vul-
nerability detection on smart contracts using machine learning. In
Proceedings of the 25th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’21, page 305–312, New
York, NY, USA, 2021. Association for Computing Machinery. https:
//doi.org/10.1145/3463274.3463348.

[23] Ethereum. Solidity documentation. https://docs.soliditylang.org/
en/v0.8.24/ Accessed: 12-02-2024.

[24] Ethereum. Solidity documentation - events. https://docs.
soliditylang.org/en/v0.8.24/contracts.html#events Accessed:
12-02-2024.

[25] Etherscan. Data Export - Open Source Contract Codes, 2024. https://
etherscan.io/exportData?type=open-source-contract-codes Ac-
cessed 10-06-2024.

[26] Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann, and Stefan Schulte.
Cross-chain smart contract invocations: A systematic multi-vocal lit-
erature review. ACM Comput. Surv., 56(6), January 2024. https:
//doi.org/10.1145/3638045.

46

https://doi.org/10.1016/0743-1066(92)90030-7
https://solidity-by-example.org/calling-contract/
https://solidity-by-example.org/calling-contract/
https://defillama.com/chains
https://defillama.com/chains
https://github.com/melonproject/oyente
https://doi.org/10.1145/3463274.3463348
https://doi.org/10.1145/3463274.3463348
https://docs.soliditylang.org/en/v0.8.24/
https://docs.soliditylang.org/en/v0.8.24/
https://docs.soliditylang.org/en/v0.8.24/contracts.html#events
https://docs.soliditylang.org/en/v0.8.24/contracts.html#events
https://etherscan.io/exportData?type=open-source-contract-codes
https://etherscan.io/exportData?type=open-source-contract-codes
https://doi.org/10.1145/3638045
https://doi.org/10.1145/3638045

[27] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A static anal-
ysis framework for smart contracts. In 2019 IEEE/ACM 2nd Inter-
national Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pages 8–15, 2019. https://doi.org/10.1109/
WETSEB.2019.00008.

[28] Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi.
Static analysis for dummies: experiencing lisa. In Lisa Nguyen Quang
Do and Caterina Urban, editors, SOAP@PLDI 2021: Proceedings of the
10th ACM SIGPLAN International Workshop on the State Of the Art
in Program Analysis, Virtual Event, Canada, 22 June, 2021, pages 1–6.
ACM, 2021. https://doi.org/10.1145/3460946.3464316.

[29] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.
Gigahorse: Thorough, declarative decompilation of smart contracts. In
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1176–1186, 2019. https://doi.org/10.1109/ICSE.2019.
00120.

[30] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: analyzing the out-of-gas
world of smart contracts. Commun. ACM, 63(10):87–95, September 2020.
https://doi.org/10.1145/3416262.

[31] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis.
Elipmoc: advanced decompilation of ethereum smart contracts. Proc.
ACM Program. Lang., 6(OOPSLA1), April 2022. https://doi.org/10.
1145/3527321.

[32] Sebastian Holler, Sebastian Biewer, and Clara Schneidewind. Horstify:
Sound security analysis of smart contracts. In 2023 IEEE 36th Computer
Security Foundations Symposium (CSF), pages 245–260, 2023. https:
//doi.org/10.1109/CSF57540.2023.00023.

[33] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE ’18,
page 259–269, New York, NY, USA, 2018. Association for Computing
Machinery. https://doi.org/10.1145/3238147.3238177.

47

https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3416262
https://doi.org/10.1145/3527321
https://doi.org/10.1145/3527321
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1109/CSF57540.2023.00023
https://doi.org/10.1145/3238147.3238177

[34] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On
synthesis of program analyzers. In Swarat Chaudhuri and Azadeh
Farzan, editors, Computer Aided Verification, pages 422–430, Cham,
2016. Springer International Publishing. https://doi.org/10.1007/
978-3-319-41540-6_23.

[35] Zeqin Liao, Yuhong Nan, Henglong Liang, Sicheng Hao, Juan Zhai, Jia-
jing Wu, and Zibin Zheng. Smartaxe: Detecting cross-chain vulnerabili-
ties in bridge smart contracts via fine-grained static analysis. Proc. ACM
Softw. Eng., 1(FSE), July 2024. https://doi.org/10.1145/3643738.

[36] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill
Roscoe. Reguard: finding reentrancy bugs in smart contracts. In Pro-
ceedings of the 40th International Conference on Software Engineer-
ing: Companion Proceeedings, ICSE ’18, page 65–68, New York, NY,
USA, 2018. Association for Computing Machinery. https://doi.org/
10.1145/3183440.3183495.

[37] Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and
Xun Wang. Combining graph neural networks with expert knowledge for
smart contract vulnerability detection. IEEE Transactions on Knowledge
and Data Engineering, 35(2):1296–1310, 2023. https://doi.org/10.
1109/TKDE.2021.3095196.

[38] Francesco Logozzo and Manuel Fähndrich. On the relative completeness
of bytecode analysis versus source code analysis. In Laurie Hendren,
editor, Compiler Construction, pages 197–212, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[39] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-
bor. Making smart contracts smarter. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages
254–269. ACM, 2016. https://doi.org/10.1145/2976749.2978309.

[40] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J. Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software

48

https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/3643738
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1109/TKDE.2021.3095196
https://doi.org/10.1109/TKDE.2021.3095196
https://doi.org/10.1145/2976749.2978309

Engineering, 47(11):2312–2331, 2021. https://doi.org/10.1109/TSE.
2019.2946563.

[41] Antoine Miné et al. Tutorial on static inference of numeric invariants
by abstract interpretation. Foundations and Trends® in Programming
Languages, 4(3-4):120–372, 2017.

[42] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo
Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Manticore:
A user-friendly symbolic execution framework for binaries and smart con-
tracts. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1186–1189. IEEE, 2019.

[43] Luca Negrini, Vincenzo Arceri, Luca Olivieri, Agostino Cortesi, and
Pietro Ferrara. Teaching through practice: Advanced static analysis
with lisa. In Emil Sekerinski and Leila Ribeiro, editors, Formal Methods
Teaching, pages 43–57, Cham, 2024. Springer Nature Switzerland. https:
//doi.org/10.1007/978-3-031-71379-8_3.

[44] Luca Negrini, Pietro Ferrara, Vincenzo Arceri, and Agostino Cortesi.
LiSA: A generic framework for multilanguage static analysis. In Vin-
cenzo Arceri, Agostino Cortesi, Pietro Ferrara, and Martina Olliaro,
editors, Challenges of Software Verification, pages 19–42. Springer
Nature Singapore, Singapore, 2023. https://doi.org/10.1007/
978-981-19-9601-6_2.

[45] Nomic Foundation. Hardhat Official Website. https://hardhat.org/
Accessed: 04-11-2024.

[46] Luca Olivieri, Thomas Jensen, Luca Negrini, and Fausto Spoto. Michel-
sonlisa: A static analyzer for tezos. In 2023 IEEE International
Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), pages 80–85, 2023.
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247.

[47] Luca Olivieri, Aradhita Mukherjee, Nabendu Chaki, and Agostino
Cortesi. Cross-chain smart contracts and dapps verification by static
analysis: Limits and challenges. In CEUR Workshop Proceedings, volume
3962. CEUR-WS, 2025. Joint National Conference on Cybersecurity
(ITASEC & SERICS 2025).

49

https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1007/978-3-031-71379-8_3
https://doi.org/10.1007/978-3-031-71379-8_3
https://doi.org/10.1007/978-981-19-9601-6_2
https://doi.org/10.1007/978-981-19-9601-6_2
https://hardhat.org/
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247

[48] Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro
Ferrara, Agostino Cortesi, and Fausto Spoto. Information Flow Anal-
ysis for Detecting Non-Determinism in Blockchain. In Karim Ali
and Guido Salvaneschi, editors, 37th European Conference on Object-
Oriented Programming (ECOOP 2023), volume 263 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 1–25, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23.

[49] Luca Olivieri and Fausto Spoto. Software verification challenges in
the blockchain ecosystem. International Journal on Software Tools for
Technology Transfer, 26(4):431–444, 2024. https://doi.org/10.1007/
s10009-024-00758-x.

[50] Michele Pasqua, Andrea Benini, Filippo Contro, Marco Crosara,
Mila Dalla Preda, and Mariano Ceccato. Enhancing ethereum smart-
contracts static analysis by computing a precise control-flow graph
of ethereum bytecode. J. Syst. Softw., 200:111653, 2023. https:
//doi.org/10.1016/J.JSS.2023.111653.

[51] Nathaniel Popper. A Hacking of More Than $50 Million Dashes Hopes
in the World of Virtual Currency. The New York Times, 2016. June
17th.

[52] Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi. Ai-
enhanced blockchain technology: A review of advancements and oppor-
tunities. Journal of Network and Computer Applications, 225:103858,
2024. https://doi.org/10.1016/j.jnca.2024.103858.

[53] Dalila Ressi, Alvise Spanò, Lorenzo Benetollo, Carla Piazza, Michele
Bugliesi, and Sabina Rossi. Vulnerability detection in ethereum
smart contracts via machine learning: A qualitative analysis. arXiv
preprint arXiv:2407.18639, 2024. https://doi.org/10.48550/arXiv.
2407.18639.

[54] H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–
366, 1953. http://www.jstor.org/stable/1990888.

50

https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.1007/s10009-024-00758-x
https://doi.org/10.1007/s10009-024-00758-x
https://doi.org/10.1016/J.JSS.2023.111653
https://doi.org/10.1016/J.JSS.2023.111653
https://doi.org/10.1016/j.jnca.2024.103858
https://doi.org/10.48550/arXiv.2407.18639
https://doi.org/10.48550/arXiv.2407.18639
http://www.jstor.org/stable/1990888

[55] Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an
abstract interpretation perspective. Mit Press, Cambridge, MA, USA,
2020.

[56] Noama Fatima Samreen and Manar H. Alalfi. Reentrancy vulnerability
identification in ethereum smart contracts. CoRR, abs/2105.02881, 2021.
https://arxiv.org/abs/2105.02881.

[57] Noama Fatima Samreen and Manar H. Alalfi. Smartscan: An approach
to detect denial of service vulnerability in ethereum smart contracts.
In 2021 IEEE/ACM 4th International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB), pages 17–26, 2021.
https://doi.org/10.1109/WETSEB52558.2021.00010.

[58] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. ethor: Practical and provably sound static analysis of ethereum
smart contracts. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page 621–640, New
York, NY, USA, 2020. Association for Computing Machinery. https:
//doi.org/10.1145/3372297.3417250.

[59] Clara Schneidewind, Markus Scherer, and Matteo Maffei. The good,
the bad and the ugly: Pitfalls and best practices in automated sound
static analysis of ethereum smart contracts. In Tiziana Margaria and
Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Applications, pages 212–231, Cham, 2020.
Springer International Publishing.

[60] The Solidity Authors. Solidity Documentation | ABI specification,
2024. https://docs.soliditylang.org/en/v0.8.28/abi-spec.html
Accessed 04/2025.

[61] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In 2018 IEEE/ACM 1st
International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pages 9–16, 2018.

[62] Vyper. Vyper documentation. https://docs.vyperlang.org/en/
stable/toctree.html Accessed: 12-02-2024.

51

https://arxiv.org/abs/2105.02881
https://doi.org/10.1109/WETSEB52558.2021.00010
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://docs.soliditylang.org/en/v0.8.28/abi-spec.html
https://docs.vyperlang.org/en/stable/toctree.html
https://docs.vyperlang.org/en/stable/toctree.html

[63] Ke Wang, Yue Li, Che Wang, Jianbo Gao, Zhi Guan, and Zhong Chen.
Xguard: Detecting inconsistency behaviors of crosschain bridges. In
Companion Proceedings of the 32nd ACM International Conference on
the Foundations of Software Engineering, FSE 2024, page 612–616, New
York, NY, USA, 2024. Association for Computing Machinery. https:
//doi.org/10.1145/3663529.3663809.

[64] Wei Wang, Jingjing Song, Guangquan Xu, Yidong Li, Hao Wang, and
Chunhua Su. Contractward: Automated vulnerability detection models
for ethereum smart contracts. IEEE Transactions on Network Science
and Engineering, 8(2):1133–1144, 2021. https://doi.org/10.1109/
TNSE.2020.2968505.

[65] Gavin Wood et al. Ethereum: A secure decentralised generalised trans-
action ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.
https://cryptodeep.ru/doc/paper.pdf, Accessed: 12-02-2024.

52

https://doi.org/10.1145/3663529.3663809
https://doi.org/10.1145/3663529.3663809
https://doi.org/10.1109/TNSE.2020.2968505
https://doi.org/10.1109/TNSE.2020.2968505
https://cryptodeep.ru/doc/paper.pdf

Appendix A. Soundness Proofs

Appendix A.1. Completeness of the S l
h lattice

Theorem 8. ⟨S l
h,⊆,⊔Sl

h
,∩, ∅,Sh⟩ is a complete ACC lattice.

Proof. S l
h is the subset of the complete powerset lattice ⟨℘(Sh),⊆,∪,∩, ∅,Sh⟩

where all elements X ∈ ℘(Sh) : X ̸= Sh ∧ |X| > l are missing. Since ⊔Sl
h

“skips” the missing elements, S l
h is closed under ⊔Sl

h
and ∩, and any X ⊆ S l

h

trivially has worst-case lub Sh and glb ∅. Moreover, since it has a finite height
of l + 2, it also satisfies ACC: analyses using S l

h will converge in a finite
number of fixpoint iterations.

Appendix A.2. Monotonicity of γ

Theorem 9. γ is monotone.

Proof. We prove that ∀Ŝ1, Ŝ2 ∈ S l
h : Ŝ1 ⊆ Ŝ2 =⇒ γ(Ŝ1) ⊆ γ(Ŝ2). Under

the assumption that Ŝ1 ⊆ Ŝ2, we consider w.l.o.g. that Ŝ2 = Ŝ1 ∪ Ŝ ′ for some
non-empty Ŝ1 and Ŝ ′, and we expand the definition of γ(Ŝ2).

γ(Ŝ2)
= γ(Ŝ1 ∪ Ŝ ′) HhypothesisI
= γ({ŝ1

0, . . . , ŝ1
n} ∪ {ŝ′

0, . . . , ŝ′
m}) Hset expansionI

= γ(ŝ1
0) ∪ · · · ∪ γ(ŝ1

n) ∪ γ(ŝ′
0) ∪ · · · ∪ γ(ŝ′

m) Hdef. γI

= γ(Ŝ1) ∪ γ(Ŝ ′) Hdef. γI

Appendix A.3. Soundness of JopK♯

Theorem 10 (Soundness of JopK♯). JopK♯ is a sound over-approximation of
JopK. Formally:

∀Ŝ ∈ S l
h : Jℓopρ

δKγ(Ŝ) ⊆ γ(Jℓopρ
δK

♯Ŝ)

Proof. Both the concrete and abstract semantics are defined as the additive
lift of the semantics on individual stacks. Thus, we first prove the soundness
of the latter computation, that is:

∀ŝ ∈ Sh : Jℓopρ
δKγ(ŝ) ⊆ γ(Jℓopρ

δK
♯ŝ)

53

Let us assume that ŝ ̸= ⊥Sh
, Jℓopρ

δK♯ŝ ̸= ⊥Sh
, and ∀s ∈ γ(ŝ) : Jℓopρ

δKs ̸= ⊥S,
since in all three cases computing both in the concrete or in the abstract
semantics would trivially result in ⊥S. Moreover, to simplify the proof, let us
assume that δ = ρ < h. The proof for other combinations of δ, ρ ,and h are
analogous.

Jℓopρ
δKγ(ŝ)

=Jℓopρ
δKγ([v0, . . . , vh−1−δ, . . . , vh−1]) Hdef. ŝI

={Jℓopρ
δK[. . . , z0, . . . , zh−1−δ, . . . , zh−1]} Hdef. γI

={[. . . , z0, . . . , zh−1−δ, ż0, . . . , żρ−1]} Hdef. Jℓopρ
δKI

⊆γ([v0, . . . , vh−1−δ, v̇0, . . . , v̇ρ−1]) Hdef. γI
=γ(pushρ(popδ(ŝ), v̇0, . . . , v̇ρ−1])) Hdef. pushρ, popδI
=γ(Jℓopρ

δK
♯ŝ) Hdef. Jℓopρ

δK
♯I

We can now prove the soundness of the overall semantics:

Jℓopρ
δKγ(Ŝ)

=
⋃
ŝ∈Ŝ

Jℓopρ
δKγ(ŝ) Hlift, def. γI

⊆
⋃
ŝ∈Ŝ

γ(Jℓopρ
δK

♯ŝ) Hprev. proofI

=γ(Jℓopρ
δK

♯Ŝ) Hdef. γI

Appendix A.4. Soundness of buildCFG
Being our approach based on Abstract Interpretation sound-by-design

(provided the necessary proofs), the soundness of the static analysis computing
the sets of abstract stacks for each node of a CFG is guaranteed by Theorems 8,
9, and 10 from Appendix A.1, Appendix A.2, and Appendix A.3, respectively.
Thus, we prove the soundness of the generated CFG assuming that these
hold, and relying on the notion of partial CFG.

Definition 11 (CFG for program P). Given an EVM program P, let N =
{ℓ | Π(ℓ) is an opcode of P}. Let G⊥ = (N, E⊥), where

E⊥ = {ℓ→ next(ℓ) | ℓ ∈ N};

54

Let G⊤ = (N, E⊤) where

E⊤ = E⊥ ∪ {ℓ→ ℓ′ | Π(ℓ) ∈ {JUMP, JUMPI} ∧ Π(ℓ′) = JUMPDEST}.

Then, a CFG G = (N, E) for P is a CFG satisfying E⊥ ⊆ E ⊆ E⊤.

Note that the CFG produced by partialCFG(P) is exactly G⊥, as it
contains a node for each opcode of P and all syntactically occurring edges
having the form ℓ → next(ℓ) (these also include the false edges of JUMPI
nodes). We now define a lattice structure on CFGs for a program using the
subgraph relation as partial order.

Lemma 12. Given an EVM program P, let GP be the set of all CFGs satisfying
Definition 11. Then ⟨GP,⊑E,⊔E,⊓E, G⊥, G⊤⟩, where (N, E1) ⊑E (N, E2) if
and only if E1 ⊆ E2, is a finite (hence complete and ACC) lattice. The lub
anbd glb operators are those induced by ⊑E.

Proof. The proof is straightforward, since GP is finite.

We now show that procedure jumpSolver implements an extensive and
monotone operator on the CFG lattice for program P.

Lemma 13 (jumpSolver is extensive). Given an EVM program P and
G ∈ GP jumpSolver produces a CFG G′ ∈ GP such that G ⊑E G′.

Proof. Straightforward, since the procedure can only add new edges.

Lemma 14 (jumpSolver is monotone). Given an EVM program P and
G1, G2 ∈ GP, let G′

i be the CFG computed by jumpSolver(Gi, h, l, c), for
i = 1, 2. Then G1 ⊑E G2 =⇒ G′

1 ⊑E G′
2.

Proof. The static analysis at line 2 of Pseudocode 2 implements a monotonic
function (in particular, since the abstract domain satisfies ACC, we do not use
widening operators). Hence, since all the edges of G1 also occur in G2, all new
edges added to G1 will also be added to G2, thereby obtaining G′

1 ⊑E G′
2.

Theorem 15. buildCFG always terminates and computes the least fixpoint
of jumpSolver on the lattice GP.

Proof. Immediate from Lemmas 12, 13 and 14.

Finally, we can prove the soundness of buildCFG.

55

Theorem 16 (buildCFG is sound). Let P be an EVM program whose first
label is ℓ0. Then buildCFG(P, h, l, true) returns a sound CFG G = (N, E)
for P. Namely, for all ℓopρ

δ ∈ P:

{ℓ→ ℓ′ | ∃s, s′ ∈ S . Ξℓ(P, ⟨[], ℓ0⟩) = ⟨s, ℓ⟩ ∧ Jℓopρ
δK⟨s, ℓ⟩ = ⟨s′, ℓ′⟩} ⊆ E.

Proof. By Theorem 15, procedure buildCFG always terminates producing
a CFG G = (N, E) for P.

From Theorems 8, 9, and 10, we known that the abstract stacks reaching
each jump are a sound over-approximation of those occurring in the concrete
executions.

Suppose first that the parameter l is sufficiently large to never cause
Ŝ = Sh. jumpSolver will thus process all jumps with lines 10–17. These
will have a finite number of stacks reaching them, whose top element v will
be either:

1. v ̸= ⊤Z♯ is a valid jump destination v ∈ JDP: in this case, the edge
representing the concrete jump is added, ensuring soundness;

2. v ̸= ⊤Z♯ is an invalid jump destination (v /∈ JDP or v = ⊤Z) or an
uninitialized stack element ∅: in this case, the concrete execution would
always raise an error; hence, soundness is preserved even if we no edge
is added;

3. an unknown value ⊤Z♯ : since conservative = true, jumpSolver adds
edges to all possible destinations to ensure soundness.

Instead, if the parameter l is too small and it causes Ŝ = Sh at any
jump opcode, since conservative = true, jumpSolver will add edges to all
possible destinations in this case too, once again ensuring soundness.

While we proved soundness for the case where conservative = true, it
is worth noting that if case (3) does not occur, soundness is ensured even
when conservative = false, as every possible jump target in the concrete
semantics is still accounted for in the CFG returned by buildCFG.

56

Conflict of Interest

The authors have declared no conflict of interest

Corresponding author: Vincenzo Arceri (vincenzo.arceri@unipr.it)

	Introduction
	Preliminaries
	EVM Bytecode and Jump Instructions
	Altering the flow of execution.
	Orphan Jumps

	Order Theory and Abstract Interpretation

	EVM Language and Semantics
	Construction of EVM Bytecode CFGs
	Abstracting computed values
	Resolving Jumps
	Soundness of the generated CFG

	Experimental Evaluation
	Comparison on CFG reconstruction
	Reentrancy vulnerabilities detection
	SolidiFI
	SmartBugs

	Related Work
	CFG Reconstruction
	Other Verification Techniques, Tools, and Directions
	Dynamic Analysis
	Mixed Static Analysis and AI Approaches
	Static analysis and Blockchain Interoperability

	Conclusion
	Data Availability
	Soundness Proofs
	Completeness of the Slh lattice
	Monotonicity of
	Soundness of op
	Soundness of buildCFG

